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Hamiltonian Cycle Problem (HCP)
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HCP is the problem of determining whether a given graph has a Hamiltonian cycle, that
is, a cycle that visits every vertex exactly once.

HCP is one of the 21 NP-complete problems identified by Karp in 1972 [Karp, 1972].

Active research has been conducted on fast solution methods, including the international
competition on the Hamiltonian Cycle Problem, the “Flinders Hamiltonian Cycle Project
(FHCP) Challenge”.
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Existing Approaches: TSP-based Methods

HCP is a special case of the TSP, and can often be solved efficiently using TSP solvers.

Concorde [Applegate+, 2006]

LKH [Helsgaun, 2000]

Snakes and Ladders Heuristic [Baniasadi+, 2019]

However, there exist instances that cannot be solved by TSP solvers.

The instances in the FHCP Challenge are specifically designed to be such cases and
cannot be efficiently solved using TSP-based methods.
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Alternative Approaches: SAT-based Methods

The development of fast SAT solvers has led to the proposal of many SAT-based
approaches for HCP.

Existing SAT-based Methods for HCP
Absolute/Relative Encoding [Prestwich, 2003]

Permutations-based Encoding [Velev+, 2009]

SAT-based CEGAR for HCP [Soh+, 2014]

Binary Adder Encoding [Zhou, 2020]

CRT Encoding [Heule, 2021]

Recent approaches show good performance on some FHCP Challenge instances.

However, there are still unsolvable instances.
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This talk

Goal
To develop an efficient SAT-based method for HCP.

Idea
Accelerate SAT-based CEGAR for HCP by using cut-set [Dantzig+, 1954].

Outline
Constraints model for HCP

Existing SAT-based CEGAR approach (conflict constraints)

Proposed SAT-based CEGAR approach with cutset (support) constraints

Experimental evaluation
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Constraints model for HCP

Given a graph G = (V, E),
if there exists a subgraph G′ = (V, E′) of G that satisfies the following constraints, then G is a
Hamiltonian graph.

(1) Degree Constraint
For every vertex v ∈ V, the degree of v must be exactly 2.

(2) Connectivity Constraint
G′ is connected.

Degree Constraint = Cardinality Constraint (Easy)

Connectivity Constraint = ??? (Problematic)

Previous studies have focused on how to encode Connectivity Constraint.
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SAT-based CEGAR for HCP [Soh+, 2014]

Procedure

HCP Relaxed HCP

G′ is
connected?
(or UNSAT?)

HCP Solution

Encoding only
degree constraints

SAT Solver
No.

Add clauses blocking
counterexample(s)

Yes.

1

2

12

3

11

10 9

4

8

5

7

6

Counterexample (G′ is not connected)
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How to block counterexample(s)?
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Counterexample (G′ is not connected)

(Naive) negate model found: prune one counterexample.

¬x1,2 ∨ ¬x2,3 ∨ ¬x3,10 ∨ ¬x10,11 ∨ ¬x11,12 ∨ ¬x12,1 ∨ ¬x4,5 ∨ ¬x5,6 ∨ ¬x6,7∨
¬x7,8 ∨ ¬x8,9 ∨ ¬x9,4

[Soh+, 2014] negate each subcycle: prune counterexamples including subcycle found.

(¬x1,2 ∨ ¬x2,3 ∨ ¬x3,10 ∨ ¬x10,11 ∨ ¬x11,12 ∨ ¬x12,1) ∧
(¬x4,5 ∨ ¬x5,6 ∨ ¬x6,7 ∨ ¬x7,8 ∨ ¬x8,9 ∨ ¬x9,4) 8 / 19



How to block counterexample(s)?
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Cut-set for C1

C1

Cut-set for C2

C2

Counterexample (G′ is not connected)

(Proposal) activate one of cut-set edges (support clauses).

x3,4 ∨ x10,9 ∨ x11,8

In this example, the cut-set for C1 and C2 is identical, so only one clause is needed, but
normally one clause is required for each subcycle.
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Blocking a "class" of cycles
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Ψsub =(¬x1,2 ∨ ¬x2,3 ∨ ¬x3,10 ∨ ¬x10,11 ∨ ¬x11,12 ∨ ¬x12,1) ∧
(¬x4,5 ∨ ¬x5,6 ∨ ¬x6,7 ∨ ¬x7,8 ∨ ¬x8,9 ∨ ¬x9,4)

Ψcut =x3,4 ∨ x10,9 ∨ x11,8

Ψsub cannot block the following counterexamples, whereas Ψcut can.
Ψcut can always prune at least as many counterexamples as Ψsub (See Proposition 2 in the
paper).
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Blocking a "class" of cycles
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Ψsub =(¬x1,2 ∨ ¬x2,3 ∨ ¬x3,10 ∨ ¬x10,11 ∨ ¬x11,12 ∨ ¬x12,1) ∧
(¬x4,5 ∨ ¬x5,6 ∨ ¬x6,7 ∨ ¬x7,8 ∨ ¬x8,9 ∨ ¬x9,4)

Ψcut =x3,4 ∨ x10,9 ∨ x11,8

Main characteristic
The cut-set clause x3,4 ∨ x10,9 ∨ x11,8 blocks not just the subcycle itself, but also the subcycles
forming a closed subgraph induced by that subcycle.
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Anti-patterns and Merging: Abstraction
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For the above counterexample, Ψcut is as follows.

Ψcut = (x3,4 ∨ x3,10 ∨ x3,11 ∨ x2,12 ∨ x1,12) ∧
(x1,12 ∨ x2,12 ∨ x3,11 ∨ x3,10 ∨ x9,10 ∨ x8,11) ∧
(x3,4 ∨ x9,10 ∨ x8,11 ∨ x4,5 ∨ x7,8) ∧
(x4,5 ∨ x5,9 ∨ x7,8)

Ψcut prunes the same number of counterexamples as Ψsub in this case since all subcycles are
not decomposed into smaller subcyles.

In the proposed method, we also enhance the pruning capability by merging subcycles.
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Experimental Environment and Benchmarks

We implemented both the existing and proposed SAT-based CEGAR solvers in Rust.
Other solvers were evaluated using publicly available source code.
Optimizations in the Proposed SAT-based CEGAR:

2loop: Prohibits 2-vertex loops [Soh+, 2014].
asym: Symmetry breaking [Heule, 2021].
merge: Cycle merging strategy.

Encoding for Degree Constraints: Seq. Counter [Sinz, 2005]
Benchmark:

All HCP instances (1,001 in total) from the Flinders Hamiltonian Cycle Project
(FHCP) [Haythorpe, 2019]
All instances are SAT (i.e., Hamiltonian cycles exist).

CPU: 2.5GHz, Memory: 64GB

SAT Solver: CaDiCaL version 1.9.4

Time Limit: 30 minutes per instance
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Ablation Study on Optimization Techniques

|V| #inst. nohint +2loop +asym +merge -merge -asym -2loop all VBS
∼ 1000 171 171 171 171 170 171 171 171 171 171
∼ 2000 165 165 165 162 165 165 165 163 164 165
∼ 3000 177 173 177 172 175 174 175 173 175 177
∼ 4000 185 152 166 151 158 166 166 159 167 169
∼ 5000 128 86 101 90 96 107 118 98 118 119
∼ 6000 80 35 52 37 47 55 76 51 75 77
∼ 7000 55 20 35 23 27 37 44 29 44 47
∼ 8000 28 9 11 9 13 13 15 12 15 16
∼ 9000 10 4 4 5 5 5 5 5 5 5
∼ 10000 2 2 2 2 2 2 2 2 2 2

Total 1001 817 884 822 858 895 937 863 936 948
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Comparison with Previous SAT-based Methods
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The proposed CEGAR successfully solved 937 instances.
Compared to the existing CEGAR, the proposed method solved 300 more instances
thanks to the modified blocking clauses.
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Experimental Results: Comparison of SAT-based Methods

Number of Vertices #Inst. Adder CRT-420 CEGAR conflict CEGAR support
∼ 1000 171 170 170 150 171
∼ 2000 165 154 152 106 165
∼ 3000 177 128 132 89 175
∼ 4000 185 94 87 75 166
∼ 5000 128 39 54 45 118
∼ 6000 80 23 31 36 76
∼ 7000 55 18 25 24 44
∼ 8000 28 9 10 9 15
∼ 9000 10 4 4 4 5
∼ 10000 2 1 1 1 2

Total 1001 640 666 539 937
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Comparison on CEGAR Iterations
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Conclusion and Future Work

We proposed a modification to the SAT-based CEGAR approach for efficiently solving the
Hamiltonian Cycle Problem, by changing how subcycles are prevented.

Experimental results on benchmark instances from FHCP Challenge showed that the
proposed method scales better than previous SAT approaches.

The proposed method solves 937 out of 1001 instances from FHCP benchmarks: the
winner of the FHCP challenge solved 985.

Future Work:
solve remaining 64 unsolved benchmarks from FHCP

Incorporate IPASIR-UP so that we can prune counterexamples every time a subcycle is
detected during SAT solving.
Incorporate parallel computation.

Conduct experiments on other HCP benchmarks.
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Additional Experimental Results with Cardinality-CDCL

|V | #inst. nohint +2loop +asym +merge -merge -asym -2loop all VBS
∼ 1000 171 171 171 171 171 171 171 171 171 171
∼ 2000 165 165 165 165 165 165 165 165 165 165
∼ 3000 177 175 175 175 176 175 175 176 175 176
∼ 4000 185 166 169 166 176 169 180 176 181 181
∼ 5000 128 86 99 86 104 99 118 104 118 119
∼ 6000 80 36 57 36 49 59 77 49 77 77
∼ 7000 55 25 36 25 29 36 46 29 46 46
∼ 8000 28 11 14 11 14 14 16 14 16 16
∼ 9000 10 6 6 6 5 6 6 5 6 6
∼ 10000 2 2 2 2 2 2 2 2 2 2

Total 1001 843 894 843 891 896 956 891 957 959
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Encoding of Degree Constraints

To encode an exact-one constraint, both at-most-one and at-least-one constraints are added.

Encoding of the at-most-one constraint x + y + z ≤ 1
¬x ∨ ¬y
¬y ∨ ¬z
¬z ∨ ¬x

Encoding of the at-least-one constraint x + y + z ≥ 1
x ∨ y ∨ z

In practice, the Sinz encoding is used for at-most-one constraints.
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Application to TSP

Although direct application is difficult, for example, since many instances have degree 3,
one possible approach is to extract the three highest-weight edges for each vertex to
construct a degree-3 subgraph, solve HCP on it, and then optimize the subgraph.
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Hardness of the Hamiltonian Cycle Problem

Instances with very few Hamiltonian cycles relative to graph size are known to be difficult.

Problems with repetitive structures or many low-degree vertices (degree 2 or less) are
also difficult.

Features of Unsatisfied Instances in This Study
Graphs where most vertices have degree between 3 and 6.

Instances derived from change ringing.
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About the Benchmark Instances

Instances in the FHCP Challenge were designed to be unsolvable by at least two out of three
TSP-based solvers.
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What is Change Ringing?

Overview
A traditional technique of ringing multiple bells in specific sequences.

Ringers change the order of bell ringing based on mathematical permutations.

Application to HCP
Each bell sequence is treated as a vertex in a graph. An edge is drawn between two
sequences if one can be transformed into the other by a single operation. The problem can
then be formulated as an HCP.

Each vertex represents a specific bell order, and each edge represents a reachable sequence
by one operation (e.g., adjacent swap).

A Hamiltonian cycle on this graph corresponds to an exhaustive performance pattern covering
all possible permutations in change ringing.
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Proposed CEGAR: Hint Constraints and Additional Processing

Constraint to Forbid 2-Vertex Loops
For every arc (i, j) ∈ A: ∧

(i, j)∈A
xi j → ¬x ji (1)

Constraint to Eliminate Symmetry
Let i be the vertex with the lowest degree. For all arc pairs (i, j), (k, i) ∈ A with j > k:

¬si, j ∨ ¬sk,i (2)
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Experimental Results: Evaluation of Hint Constraints and Processing
(Sinz Encoding)

頂点数 問題数 nohint +2loop +asym +merge -merge -asym -2loop all VBS
∼ 1000 171 171 171 171 170 171 171 171 171 171
∼ 2000 165 165 165 162 165 165 165 163 164 165
∼ 3000 177 173 177 172 175 174 175 173 175 177
∼ 4000 185 152 166 151 158 166 166 159 167 169
∼ 5000 128 86 101 90 96 107 118 98 118 119
∼ 6000 80 35 52 37 47 55 76 51 75 77
∼ 7000 55 20 35 23 27 37 44 29 44 47
∼ 8000 28 9 11 9 13 13 15 12 15 16
∼ 9000 10 4 4 5 5 5 5 5 5 5
∼ 10000 2 2 2 2 2 2 2 2 2 2
合計 1001 817 884 822 858 895 937 863 936 948

Add appropriate summary point if needed.

28 / 19



Experimental Results: Evaluation of Hint Constraints and Processing
(Cardinality-CDCL)

|V | #inst. nohint +2loop +asym +merge -merge -asym -2loop all VBS
∼ 1000 171 171 171 171 171 171 171 171 171 171
∼ 2000 165 165 165 165 165 165 165 165 165 165
∼ 3000 177 175 175 175 176 175 175 176 175 176
∼ 4000 185 166 169 166 176 169 180 176 181 181
∼ 5000 128 86 99 86 104 99 118 104 118 119
∼ 6000 80 36 57 36 49 59 77 49 77 77
∼ 7000 55 25 36 25 29 36 46 29 46 46
∼ 8000 28 11 14 11 14 14 16 14 16 16
∼ 9000 10 6 6 6 5 6 6 5 6 6
∼ 10000 2 2 2 2 2 2 2 2 2 2
合計 1001 843 894 843 891 896 956 891 957 959
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Experimental Environment and Benchmarks

We implemented both the existing and proposed SAT-based CEGAR solvers in Rust.
Other solvers were evaluated using publicly available source code.
Hint Constraints and Processing in the Proposed SAT-based CEGAR:

2loop: Prohibits 2-vertex loops.
asym: Symmetry elimination.
merge: Cycle merging strategy.

Benchmark:
HCP instances (1,001 total) from the Flinders Hamiltonian Cycle Project
(FHCP) [Haythorpe, 2019]
All instances are SAT (i.e., Hamiltonian cycles exist).

CPU: 2.5GHz

Memory: 64GB

SAT Solver: CaDiCaL version 1.9.4

Time Limit: 30 minutes per instance
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Constraints of the Hamiltonian Cycle Problem (Directed)

V is a set of n vertices, A is the set of directed edges. G = (V, A) is a directed graph.
xi j = 1⇔ the directed edge (i, j) ∈ A is included in the solution.

Degree Constraints∑
(i, j)∈A

xi j = 1 for each i = 1, . . . , n (out-degree) (3)∑
(i, j)∈A

xi j = 1 for each j = 1, . . . , n (in-degree) (4)

Connectivity Constraint∑
i, j∈S

xi j ≤ |S | − 1 S ⊂ V, 2 ≤ |S | ≤ n − 2 (5)

Naively encoding the connectivity constraint into SAT results in a very large number of
clauses― proportional to n3 in the number of vertices n.
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Symmetry Elimination

Let u be the vertex with the lowest (or highest) degree, and let v = 1..n (u , v) be the
vertices adjacent to u.

Ensure that the vertex entering u has a smaller index than the one leaving u.

Example Constraint

¬xun ∧
∧

i, j∈{1...(n−1)},i< j

(¬xiu ∨ ¬xu j) (6)

Alternative Formulation

¬xun ∧
∨

i∈{2...n}
xiu ∧

∧
j∈{2...(n−1)}

(¬xu j ∨
∨
i> j

xiu) (7)
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FHCP Challenge Results

The winning solver in the FHCP Challenge solved 985 out of 1,001 instances. The following 16
instances remained unsolved:
788, 868, 937, 951, 954, 960, 965, 966, 974, 976, 981, 983, 987, 993, 994, 998
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