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Hamiltonian Cycle Problem (HCP)

m HCP is the problem of determining whether a given graph has a Hamiltonian cycle, that
is, a cycle that visits every vertex exactly once.
m HCP is one of the 21 NP-complete problems identified by Karp in 1972 [Karp, 1972].

m Active research has been conducted on fast solution methods, including the international
competition on the Hamiltonian Cycle Problem, the “Flinders Hamiltonian Cycle Project
(FHCP) Challenge”.
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Existing Approaches: TSP-based Methods

HCP is a special case of the TSP, and can often be solved efficiently using TSP solvers.
m Concorde [Applegate+, 2006]
m LKH [Helsgaun, 2000]
m Snakes and Ladders Heuristic [Baniasadi+, 2019]

m However, there exist instances that cannot be solved by TSP solvers.

m The instances in the FHCP Challenge are specifically designed to be such cases and
cannot be efficiently solved using TSP-based methods.
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Alternative Approaches: SAT-based Methods

m The development of fast SAT solvers has led to the proposal of many SAT-based
approaches for HCP.

Existing SAT-based Methods for HCP
m Absolute/Relative Encoding [Prestwich, 2003]
m Permutations-based Encoding [Velev+, 2009]
m SAT-based CEGAR for HCP [Soh+, 2014]
m Binary Adder Encoding [Zhou, 2020]
m CRT Encoding [Heule, 2021]

Recent approaches show good performance on some FHCP Challenge instances.

However, there are still unsolvable instances.
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This talk

To develop an efficient SAT-based method for HCP.

Accelerate SAT-based CEGAR for HCP by using cut-set [Dantzig+, 1954].

m Constraints model for HCP

m Existing SAT-based CEGAR approach (conflict constraints)
m Proposed SAT-based CEGAR approach with cutset (support) constraints
m Experimental evaluation
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Constraints model for HCP

Given a graph G = (V, E),
if there exists a subgraph G’ = (V, E’) of G that satisfies the following constraints, then G is a
Hamiltonian graph.
(1) Degree Constraint

m For every vertex v € V, the degree of v must be exactly 2.

(2) Connectivity Constraint
m G’ is connected.

m Degree Constraint = Cardinality Constraint (Easy)
m Connectivity Constraint = ??? (Problematic)
Previous studies have focused on how to encode Connectivity Constraint.
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SAT-based CEGAR for HCP [Soh+, 2014]

Procedure

Encoding only

HCP degree constraints S IEeE
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SAT Solverl Add clauses blocking
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HCP Solution € connected?
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How to block counterexample(s)?
(23 (5
~

O (10— O
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Counterexample (G’ is not connected)

(Naive) negate model found: prune one counterexample.

X2V oxa3 Vooxz oV oxgenn Vo oxpe V oxeg VvV oxgs V oxse Vo oxe gV

—Xx7,8 V 1xg9 V x4

[Soh+, 2014] negate each subcycle: prune counterexamples including subcycle found.

(mx12 V 2x23 V X310 V X011 V X2 V Xi2n) A

(—x45 V —x56 V 2Xe7 V 2Xx78 V 1Xg9 V X9 4)




How to block counterexample(s)?

Cut-set for Cl Cut set for C;

Counterexample (G" is not connected)

(Proposal) activate one of cut-set edges (support clauses).

X34 V X109 V X11,8

In this example, the cut-set for C; and C; is identical, so only one clause is needed, but
normally one clause is required for each subcycle.
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Blocking a "class" of cycles

Wob =(=x12 V X233V 2x310 V 2X10,11 V X112 V Xi2,) A
(mxg5 V =x56 V 2X6,7 V 2x78 V mxg 9 V mxg 4)

Weur =x34 V X109 V X118

Y.« can always prune at least as many counterexamples as ¥y, (See Proposition 2 in the
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Y..p» cannot block the following counterexamples, whereas ¥, can. J




Blocking a "class" of cycles

Wob =(=x12 V X233V 2x310 V 2X10,11 V X112 V Xi2,) A
(mxg5 V =x56 V 2X6,7 V 2x78 V mxg 9 V mxg 4)

Weur =x34 V X109 V X118

Main characteristic

The cut-set clause x34 V x10,9 V x11,8 blocks not just the subcycle itself, but also the subcycles
forming a closed subgraph induced by that subcycle.
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Anti-patterns and Merging: Abstraction

For the above counterexample, ¥, is as follows.
Weur = (X34 V X310V X311 V X2,12 V X1,12) A
(x1,12 V x2,12 V X311 V X310 V X910 V Xg,11) A
(X34 V X910 V X811 V X45 V x78) A
(x45V x59 V X738)
Y.« prunes the same number of counterexamples as Wy, in this case since all subcycles are
not decomposed into smaller subcyles.

m In the proposed method, we also enhance the pruning capability by merging subcycles. J
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Experimental Environment and Benchmarks

m We implemented both the existing and proposed SAT-based CEGAR solvers in Rust.
Other solvers were evaluated using publicly available source code.
Optimizations in the Proposed SAT-based CEGAR:

m 2loop: Prohibits 2-vertex loops [Soh+, 2014].
m asym: Symmetry breaking [Heule, 2021].
m merge: Cycle merging strategy.

Encoding for Degree Constraints: Seq. Counter [Sinz, 2005]
Benchmark:

m All HCP instances (1,001 in total) from the Flinders Hamiltonian Cycle Project
(FHCP) [Haythorpe, 2019]
m All instances are SAT (i.e., Hamiltonian cycles exist).

CPU: 2.5GHz, Memory: 64GB
SAT Solver: CaDiCaLl version 1.9.4
Time Limit: 30 minutes per instance
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Ablation Study on Optimization Techniques

V| #inst. | nohint +2loop +asym +merge -merge -asym -2loop all | VBS

~ 1000 171 171 171 171 170 171 171 171 171 | 171
~ 2000 165 165 165 162 165 165 165 163 164 | 165
~ 3000 177 173 177 172 175 174 175 173 175 | 177
~ 4000 185 152 166 151 158 166 166 159 167 | 169
~ 5000 128 86 101 90 96 107 118 98 118 | 119
~ 6000 80 35 52 37 47 55 76 51 75 77
~ 7000 55 20 35 23 27 37 44 29 44 47
~ 8000 28 9 11 9 13 13 15 12 15 16
~ 9000 10 4 4 5 5 5 5 5 5 5
~ 10000 2 2 2 2 2 2 2 2 2 2
Total 1001 817 884 822 858 895 937 863 936 | 948
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Comparison with Previous SAT-based Methods
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Experimental Results: Comparison of SAT-based Methods

Number of Vertices | #Inst. | Adder CRT-420 CEGAR conflict | CEGAR support
~ 1000 171 170 170 150 171
~ 2000 165 154 152 106 165
~ 3000 177 128 132 89 175
~ 4000 185 94 87 75 166
~ 5000 128 39 54 45 118
~ 6000 80 23 31 36 76
~ 7000 55 18 25 24 44
~ 8000 28 9 10 9 15
~ 9000 10 4 4 4 5
~ 10000 2 1 1 1 2
Total 1001 640 666 539 937
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Comparison on CEGAR lterations
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Conclusion and Future Work

m We proposed a modification to the SAT-based CEGAR approach for efficiently solving the
Hamiltonian Cycle Problem, by changing how subcycles are prevented.

m Experimental results on benchmark instances from FHCP Challenge showed that the
proposed method scales better than previous SAT approaches.

m The proposed method solves 937 out of 1001 instances from FHCP benchmarks: the
winner of the FHCP challenge solved 985.

m solve remaining 64 unsolved benchmarks from FHCP

m Incorporate IPASIR-UP so that we can prune counterexamples every time a subcycle is
detected during SAT solving.

m Incorporate parallel computation.
m Conduct experiments on other HCP benchmarks.
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Appendix



Additional Experimental Results with Cardinality-CDCL

V| #inst. | nohint +2loop +asym +merge -merge -asym -2loop all | VBS

~ 1000 171 171 171 171 171 171 171 171 171 | 171
~ 2000 165 165 165 165 165 165 165 165 165 | 165
~ 3000 177 175 175 175 176 175 175 176 175 | 176
~ 4000 185 166 169 166 176 169 180 176 181 | 181
~ 5000 128 86 99 86 104 99 118 104 118 | 119
~ 6000 80 36 57 36 49 59 77 49 77 77
~ 7000 55 25 36 25 29 36 46 29 46 46
~ 8000 28 11 14 11 14 14 16 14 16 16
~ 9000 10 6 6 6 5 6 6 5 6 6
~ 10000 2 2 2 2 2 2 2 2 2 2
Total 1001 843 894 843 891 896 956 891 957 | 959
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Encoding of Degree Constraints

To encode an exact-one constraint, both at-most-one and at-least-one constraints are added.

Encoding of the at-most-one constraint x + y +z < 1
XV o-oy
-y Vg
—ZV X

Encoding of the at-least-one constraint x + y + z > 1
xVyVz

In practice, the Sinz encoding is used for at-most-one constraints.
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Application to TSP

m Although direct application is difficult, for example, since many instances have degree 3,
one possible approach is to extract the three highest-weight edges for each vertex to
construct a degree-3 subgraph, solve HCP on it, and then optimize the subgraph.
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Hardness of the Hamiltonian Cycle Problem

m Instances with very few Hamiltonian cycles relative to graph size are known to be difficult.

m Problems with repetitive structures or many low-degree vertices (degree 2 or less) are
also difficult.

Features of Unsatisfied Instances in This Study
m Graphs where most vertices have degree between 3 and 6.

m Instances derived from change ringing.
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About the Benchmark Instances

Instances in the FHCP Challenge were designed to be unsolvable by at least two out of three
TSP-based solvers.

Smallest Instance
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What is Change Ringing?

m A traditional technique of ringing multiple bells in specific sequences.

m Ringers change the order of bell ringing based on mathematical permutations.

Application to HCP

Each bell sequence is treated as a vertex in a graph. An edge is drawn between two
sequences if one can be transformed into the other by a single operation. The problem can
then be formulated as an HCP.

Each vertex represents a specific bell order, and each edge represents a reachable sequence
by one operation (e.g., adjacent swap).

v

A Hamiltonian cycle on this graph corresponds to an exhaustive performance pattern covering
all possible permutations in change ringing.
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Proposed CEGAR: Hint Constraints and Additional Processing

Constraint to Forbid 2-Vertex Loops

For every arc (i, j) € A:

A -

(i.)€A

(1)

v

Constraint to Eliminate Symmetry
Let i be the vertex with the lowest degree. For all arc pairs (i, j), (k, i) € A with j > k:

T8i,j vV TSk

.

27/19



Experimental Results: Evaluation of Hint Constraints and Processing

(Sinz Encoding)

TES# | RIS | nohint +2loop +asym +merge -merge -asym -2loop all | VBS
~ 1000 171 171 171 171 170 171 171 171 171 171
~ 2000 165 165 165 162 165 165 165 163 164 | 165
~ 3000 177 173 177 172 175 174 175 173 175 | 177
~ 4000 185 152 166 151 158 166 166 159 167 | 169
~ 5000 128 86 101 90 96 107 118 98 118 | 119
~ 6000 80 35 52 37 47 55 76 51 75 77
~ 7000 55 20 35 23 27 37 44 29 44 47
~ 8000 28 9 11 9 13 13 15 12 15 16
~ 9000 10 4 4 5 5 5 5 5 5 5
~ 10000 2 2 2 2 2 2 2 2 2 2

=1 1001 817 884 822 858 895 937 863 936 | 948

eded.
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Experimental Results: Evaluation of Hint Constraints and Processing

(Cardinality-CDCL)

V| #inst. | nohint +2loop +asym +merge -merge -asym -2loop all | VBS
~ 1000 171 171 171 171 171 171 171 171 171 171
~ 2000 165 165 165 165 165 165 165 165 165 | 165
~ 3000 177 175 175 175 176 175 175 176 175 | 176
~ 4000 185 166 169 166 176 169 180 176 181 | 181
~ 5000 128 86 99 86 104 99 118 104 118 | 119
~ 6000 80 36 57 36 49 59 77 49 77 77
~ 7000 55 25 36 25 29 36 46 29 46 46
~ 8000 28 11 14 11 14 14 16 14 16 16
~ 9000 10 6 6 6 5 6 6 5 6 6
~ 10000 2 2 2 2 2 2 2 2 2 2

= 1001 843 894 843 891 896 956 891 957 | 959
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Experimental Environment and Benchmarks

m We implemented both the existing and proposed SAT-based CEGAR solvers in Rust.
Other solvers were evaluated using publicly available source code.
m Hint Constraints and Processing in the Proposed SAT-based CEGAR:

m 2loop: Prohibits 2-vertex loops.
m asym: Symmetry elimination.
m merge: Cycle merging strategy.

m Benchmark:

m HCP instances (1,001 total) from the Flinders Hamiltonian Cycle Project
(FHCP) [Haythorpe, 2019]
m All instances are SAT (i.e., Hamiltonian cycles exist).

m CPU: 2.5GHz

m Memory: 64GB

m SAT Solver: CaDiCal version 1.9.4
m Time Limit: 30 minutes per instance
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Constraints of the Hamiltonian Cycle Problem (Directed)

V is a set of n vertices, A is the set of directed edges. G = (V, A) is a directed graph.
x;j = 1 & the directed edge (i, j) € A is included in the solution.

Degree Constraints

Z xij=1 foreachi=1,...,n (out-degree) (3)
(i,))eA
Z xij=1 foreach j=1,...,n (in-degree) (4)
(i,))eA )
Connectivity Constraint
le-,-s|5|—1 Scv,2<IS|<n-2 (5)
i,jeS

v

m Naively encoding the connectivity constraint into SAT results in a very large number of

clauses — proportional to #3 in the number of vertices n.
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Symmetry Elimination

m Let u be the vertex with the lowest (or highest) degree, and let v = 1..n (u # v) be the
vertices adjacent to u.
m Ensure that the vertex entering u has a smaller index than the one leaving u.

Example Constraint

an N\ Grvon ©
i,je{l...(n-1)},i<j

Alternative Formulation
—Xun N\ \/ Xiu N\ /\ (_‘xuj \ \/ Xiu) (7)

i€{2...n} JE2...(n—-1)} i>j

v
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FHCP Challenge Results

The winning solver in the FHCP Challenge solved 985 out of 1,001 instances. The following 16
instances remained unsolved:
788, 868, 937, 951, 954, 960, 965, 966, 974, 976, 981, 983, 987, 993, 994, 998
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