ASP-based Large Neighborhood Prioritized Search for Course Timetabling

<u>Irumi Sugimori</u>¹ Katsumi Inoue² Hidetomo Nabeshima³ Torsten Schaub⁴ Takehide Soh⁵ Naoyuki Tamura⁵ Mutsunori Banbara¹

¹Nagoya University

²National Institute of Informatics

³University of Yamanashi

⁴Universität Potsdam

⁵Kobe University

LPNMR2024@Dallas October 14th, 2024

Overview

- Curriculum-based Course Timetabling (CB-CTT) is one of the most studied educational timetabling problems. CB-CTT has been used in international timetabling competitions.
- Large Neighborhood Prioritized Search (LNPS; [Sugimori+,'24]¹) is a hybrid between systematic and stochastic local search for solving Combinatorial Optimization Problems (COPs).

Contributions

We present an approach to solve CB-CTT with LNPS based on ASP.

- We develop domain-specific LNPS heuristics for CB-CTT solving.
- The resulting teaspoon-lnps system demonstrates that LNPS can significantly enhance the performance of ASP for CB-CTT solving.

¹Large Neighborhood Prioritized Search for Combinatorial Optimization with Answer Set Programming, KR2024

Timetabling

Timetabling is the task of assigning a set of entities (e.g., tasks, events, people) to the limited number of resources over time, subject to a given set of hard and soft constraints.

• The typical topics of this area include:

Educational timetabling, Transport timetabling, Healthcare timetabling, Employee timetabling, Sports timetabling.

- International conferences and competitions have been held:
 - PATAT: International Series of Conferences on the Practice and Theory of Automated Timetabling
 - ITC: International Timetabling Competitions Web

Timetabling has received increasing attention from both researchers and practitioners.

Curriculum-based Course Timetabling (CB-CTT)

CB-CTT is defined as the task of assigning all lectures into a weekly timetable, subject to a given set of hard and soft constraints.

Hard constraints	Soft constraints						
H ₁ . Lectures	S_1 . RoomCapacity	S ₆ . StudentMinMaxLoad					
H_2 . Conflicts	S_2 . MinWorkingDays	S_7 . TravelDistance					
H_3 . RoomOccupancy	S_3 . IsolatedLectures	S_8 . RoomSuitability					
H_4 . Availability	S_4 . Windows	S_9 . DoubleLectures					
•	S_5 . RoomStability						

- Each lecture belonging to a course must take place in a room at a period on a day.
- The hard constraints must be strictly satisfied.
- The **soft constraints** are not necessarily satisfied but the sum of their violations should be minimal.

Formulations

- Soft constraints are different in each formulation.
- UD2 was used in ITC-2007. UD5 is the most difficult formulation.

Constraint	UD1	UD2	UD3	UD4	UD5
H_1 . Lectures	Н	Н	Н	Н	Н
H_2 . Conflicts	Н	Н	Н	Н	Н
H_3 . RoomOccupancy	Н	Н	Н	Н	Н
H_4 . Availability	Н	Н	Н	Н	Н
S_1 . RoomCapacity	1	1	1	1	1
S_2 . MinWorkingDays	5	5	-	1	5
S_3 . IsolatedLectures	1	2	-	-	1
S_4 . Windows	-	-	4	1	2
S_5 . RoomStability	-	1	-	-	-
S_6 . StudentMinMaxLoad	-	-	2	1	2
S_7 . TravelDistance	-	-	-	-	2
S_8 . RoomSuitability	-	-	3	Н	-
S_9 . DoubleLectures	-	-	-	1	-

teaspoon encoding [Banbara+,'13,'19]

teaspoon encoding is a collection of ASP encodings for CB-CTT solving.

Lessons learned from teaspoon encoding

A proper way of using different atoms depending on constraints can improve the efficiency of CB-CTT solving.

- The most direct encoding uses the predicate assigned/4 only.
 - The atom assigned(C,R,D,P) represents that a lecture of a course C is assigned to a room R at a period P on a day D.
- The *teaspoon* encoding uses two different predicates <u>assigned/3</u> and <u>assigned/4</u> depending on constraints.
 - The atom assigned(C,D,P) drops the room information.

How does assigned/4 construct the solution?

The partial solution on the left forms the weekly timetables for the two curricula on the right.

Cur1 partial answer set Day0 Day1 Day2 Day3 Day4 SceCosC assigned ("TecCos", rB,0,1). rB assigned("TecCos", rB,0,3). TecCos ArcTec assigned("TecCos", rB,1,3). rB rB assigned("TecCos", rB,2,3). ArcTec ArcTec SceCosC SceCosC assigned("TecCos", rB,4,3). rB rB rB rB assigned ("SceCosC", rB, 3, 0). TecCos TecCos TecCos TecCos assigned("SceCosC", rB, 2, 2). rB rB rB rB assigned ("SceCosC", rB, 4, 2). Cur₂ assigned("ArcTec", rB,3,1). Day0 Dav1 Day2 Day3 Day4 assigned("ArcTec", rB,0,2). assigned("ArcTec", rB,1,2). assigned ("Geotec", rA,4,1). TecCos Geotec assigned("Geotec", rA,0,2). rA assigned ("Geotec", rA,1,2). Geotec Geotec Geotec Geotec assigned("Geotec", rA,2,2). rΑ rA rΑ rΑ assigned ("Geotec", rA,4,2). TecCos TecCos TecCos TecCos rB rB rB rB

Motivation

- *teaspoon* demonstrated that ASP can compete with state-of-the-art solving techniques on course timetabling, including
 - metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.
- In fact, *teaspoon* managed to either improve or reproduce the best known bounds for 182 out of 305 combinations in total (all 61 instances in 5 formulations).

Motivation

- teaspoon demonstrated that ASP can compete with state-of-the-art solving techniques on course timetabling, including
 - metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.
- In fact, *teaspoon* managed to either improve or reproduce the best known bounds for 182 out of 305 combinations in total (all 61 instances in 5 formulations).

Limitation of teaspoon

Especially for UD5, systematic search of ASP solvers quickly falls into saturated solutions for many instances.

Motivation

- teaspoon demonstrated that ASP can compete with state-of-the-art solving techniques on course timetabling, including
 - metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.
- In fact, *teaspoon* managed to either improve or reproduce the best known bounds for 182 out of 305 combinations in total (all 61 instances in 5 formulations).

Limitation of teaspoon

Especially for UD5, systematic search of ASP solvers quickly falls into saturated solutions for many instances.

Idea of this research

We tackle this problem issue by taking advantage of Large Neighborhood Prioritized Search (LNPS).

Large Neighborhood Prioritized Search [Sugimori+,KR'24]

LNPS is a metaheuristic that starts with an initial solution and then iteratively tries to find better solutions by alternately destroying a current solution and reconstructing it with prioritized search.

- The prioritized search is a systematic search for which its branching heuristic can be configured or customized.
- The prioritized search can be implemented with heuristic-driven ASP solving (viz. #heuristic statement).

Algorithm 1 LNPS

Input: a feasible (current) solution x **Output:** the best solution x^*

1:
$$x^* \leftarrow x$$

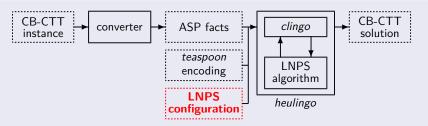
if $accept(x^t, x)$ then

$$x \leftarrow x^t$$

6: end if
7: if
$$c(x^t) < c(x^*)$$
 then
8: $x^* \leftarrow x^t$

5:

8.


heulingo: an ASP-based implementation of LNPS

- Variability: heulingo provides a flexible search without strongly depending on the destroy operators compared to traditional LNS [Shaw,'98], since the undestroyed part is not fixed.
- Optimality: heulingo can guarantee the optimality of solutions.
- Domain heuristics: heulingo allows for easy incorporation of domain-specific heuristics in a declarative way.
- Efficiency: heulingo has demonstrated that LNPS can significantly enhance the solving performance of ASP on hard optimization problems, such as traveling salesperson, social golpher, sudoku generation, weighted strategic company and so on.

We focus on the development of domain-specific LNPS heuristics for efficient CB-CTT solving.

teaspoon-Inps approach (proposal)

We develop an approach to solve CB-CTT with ASP-based LNPS.

- The resulting teaspoon-lnps solver accepts a CB-CTT instance and converts it into ASP facts.
- ② In turn, these facts are combined with *teaspoon* encoding and an LNPS configuration, which are afterward solved by *heulingo*.
 - LNPS configurations define the behavior of the LNPS heuristic, especially for the destroy and prioritized-search operators.

LNPS configurations

We develop five LNPS configurations for CB-CTT solving.

- Random is the simplest domain-independent heuristic that randomly destroys a current solution.
- Day-Period and Day-Room are domain-specific heuristics inspired by the traditional LNS heuristic for CB-CTT solving [Kiefer+,'17].
- Swap-Room and DP-Swap-Room are novel domain-specific configurations for CB-CTT solving, taking advantage of prioritized search.

Random N

Random N randomly destroys N% of a current solution and keeps the undestroyed part as much as possible in each iteration of LNPS.

```
#program config.
| lnps_project(assigned,4).
| lnps_destroy(assigned,4,15,p(n)).
| lnps_prioritize(assigned,4,1,true).
```

- The atom _lnps_project(assigned,4) means that the atoms of assigned/4 belonging to an answer set are subject to LNPS.
- The atom _lnps_destroy(assigned,4,15,p(n)) means that n\%
 of a current solution characterized by assigned/4 are destroyed.
 - The 3rd argument 15 = (1111)₂ represents that all possible tuples (C,R,D,P) of assigned(C,R,D,P) are subject to destruction.

Random N

Random N randomly destroys N% of a current solution and keeps the undestroyed part as much as possible in each iteration of LNPS.

```
1 #program config.
2 _lnps_project(assigned,4).
3 _lnps_destroy(assigned,4,15,p(n)).
4 _lnps_prioritize(assigned,4,1,true).
```

- The atom _lnps_prioritize(assigned,4,1,true) means that the undestroyed part is kept as much as possible.
- Technically, this atom corresponds to clingo's heuristic statement

```
#heuristic assigned(C,R,D,P):Body. [1,true].
```

Day-Period

Day-Period randomly selects a single day-period pair. In turn, it destroys parts of a current solution including the selected pair and keeps the undestroyed part as much as possible.

```
1 #program config.
2 _lnps_project(assigned,4).
3 _lnps_destroy(assigned,4,3,n(1)).
4 _lnps_prioritize(assigned,4,1,true).
```

- The difference from Random N is the fact in Line 3.
- The fact means that parts of a current solution characterized by assigned/4 containing a randomly selected day-period pair are destroyed.
 - The 3rd argument $3 = (0011)_2$ represents that all possible pairs (D,P) of assigned(C,R,D,P) are subject to destruction.

Swap-Room N

- Swap-Room *N* is similar to Random *N*, but tries to keep course-day-period assignments as much as possible.
- This is designed to find better solutions by swapping rooms in the current solution.

- The difference from Random N is the addition of Lines 5–7.
- The additional facts mean that the course-day-period assignments represented by assigned/3 are kept as much as possible.

DP-Swap-Room N

- DP-Swap-Room N is similar to Swap-Room N, but randomly selects N day-period pairs and destroys all atoms including any selected pair.
- This is designed to find better solutions by swapping rooms at N day-period pairs in the current solution.

```
#program config.
2    _lnps_project(assigned,4).
3    _lnps_destroy(assigned,4,3,n(n)).
4    _lnps_prioritize(assigned,4,1,true).
5    _lnps_project(assigned,3).
6    _lnps_destroy(assigned,3,7,p(0)).
7    _lnps_prioritize(assigned,3,1,true).
```

- The difference from Swap-Room *N* is the fact in Line 3.
- The fact means that parts of a current solution containing any one of randomly selected **n** day-period pairs are destroyed.

Experiments

We carry out experiments to evaluate our teaspoon-lnps approach.

- We use all 61 instances of standard CB-CTT benchmark set within the most difficult UD5 formulation.
- ASP encoding: teaspoon encoding [Banbara+,'13,'19]
- We compare
 - clingo-5.6.2 with the two best options [Banbara+,'19].
 - *teaspoon-lnps* with the five configurations:
 - **1** Random *N* with 3 different percentages $N \in \{2, 4, 6\}$
 - ② Day-Period
 - Oay-Room
 - **4** Swap-Room *N* with 3 different percentages $N \in \{8, 10, 12\}$
 - **1** DP-Swap-Room N with 3 different cardinalities $N \in \{1,2,3\}$
- Time limit: 1 hour for each

Comparison of LNPS configurations on ITC-2007

	clii	ngo					teasp	oon-Inp	s				
Instance		ob usc	R	andom	N	Day-	Day-	Swa	p-Roon	n N	DP-Sv	vap-Ro	om N
	DD		2%	4%	6%	Period	Room	8%	10%	12%	1	2	3
comp01	115	283	13	11	13	11	11	11	11	11	11	11	11
comp02	989	331	269	249	196	187	244	178	230	218	221	213	216
comp03	791	302	207	207	189	189	194	172	175	194	165	168	174
comp04	66	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49
comp05	2662	1940	929	964	1011	753	863	1016	803	839	1040	936	978
comp06	777	1025	229	218	221	184	195	185	174	207	166	156	213
comp07	924	1149	196	197	342	163	172	144	243	251	203	233	181
comp08	332	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55
comp09	563	254	183	175	174	165	161	173	169	160	168	179	156
comp10	821	1229	196	179	195	170	153	127	160	147	147	180	167
comp11	287	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0
comp12	2626	1246	656	649	657	664	677	637	624	642	638	644	622
comp13	652	301	196	187	178	181	196	165	161	160	164	168	166
comp14	746	* 67	158	165	168	169	196	122	119	111	130	113	117
comp15	820	607	206	212	211	194	226	218	223	228	223	224	204
comp16	944	1090	191	199	244	209	217	154	199	177	173	200	173
comp17	979	412	216	218	239	234	238	193	174	207	194	178	214
comp18	503	340	158	153	158	152	158	146	149	144	148	151	143
comp19	890	919	186	198	209	191	205	182	182	189	194	188	173
comp20	3304	1386	362	391	996	403	361	400	359	402	393	451	544
comp21	891	310	255	268	281	238	247	193	197	179	215	166	183
#best bounds	0	4	3	4	3	6	4	8	6	5	5	6	8

• Swap-Room N = 8 and DP-Swap-Room N = 3 found the most number of best solutions.

Comparison with other approaches 1/3

Instance	Best known	cling	go	teaspoo	easpoon-Inps		
instance	bound (#)	Obtained bound	Rate to # (%)	Obtained bound	Rate to # (%)		
comp01	11	115	+945	11	0		
comp02	130	331	+154	178	+36		
comp03	142	302	+112	165	+16		
comp04	49	49	0	49	0		
comp05	570	1940	+240	753	+32		
comp06	85	777	+814	156	+83		
comp07	42	924	+2100	144	+242		
comp08	55	55	0	55	0		
comp09	150	254	+69	156	+4		
comp10	72	821	+1040	127	+76		
comp11	0	0	0	0	0		
comp12	483	1246	+157	622	+28		
comp13	147	301	+104	160	+8		
comp14	67	67	0	111	+65		
comp15	176	607	+244	194	+10		
comp16	96	944	+883	154	+60		
comp17	155	412	+165	174	+12		
comp18	137	340	+148	143	+4		
comp19	125	890	+612	173	+38		
comp20	124	1386	+1017	359	+189		
comp21	151	310	+105	166	+9		

- The previous best known bounds (#) have been obtained by metaheuristic algorithms, ILP, SAT/MaxSAT, etc.
- We calculate obtained bound-♯ as the rate of distance to the best known bounds.

Comparison with other approaches 2/3

Instance	Best known	clin	go	teaspoon-Inps				
instance	bound (#)	Obtained bound	Rate to # (%)	Obtained bound	Rate to # (%)			
DDS1	1831	6536	+256	3557	+94			
DDS2	64	398	+521	70	+9			
DDS3	22	22	0	22	0			
DDS4	96	3123	+3153	1732	+1704			
DDS5	76	76	0	76	0			
DDS6	96	849	+784	167	+73			
DDS7	52	645	+1140	56	+7			
EA01	196	807	+311	207	+5			
EA02	128	990	+673	113	-11			
EA03	90	2555	+2738	660	+633			
EA04	18	52	+188	311	+1627			
EA05	14	19	+35	14	0			
EA06	99	543	+448	152	+53			
EA07	205	2831	+1280	1142	+457			
EA08	40	276	+590	40	0			
EA09	48	48	0	48	0			
EA10	93	444	+377	362	+289			
EA11	40	211	+427	40	0			
EA12	27	234	+766	27	0			

• teaspoon-Inps succeeds in finding an improved bound of EA02.

Comparison with other approaches 3/3

Instance	Best known	clinį	go	teaspoo	n-Inps
instance	bound (#)	Obtained bound	Rate to # (%)	Obtained bound	Rate to # (%)
erlangen2011_2	12353	17035	+37	15480	+25
erlangen2012_1	28236	25061	-11	25763	-8
erlangen2012_2	37103	34360	-7	35220	-5
erlangen2013_1	28997	28302	-2	25339	-12
erlangen2013_2	30533	29140	-4	28870	-5
erlangen2014_1	28655	24510	-14	23926	-16
test1	232	607	+161	232	0
test2	20	20	0	20	0
test3	68	117	+72	76	+11
test4	166	260	+56	144	-13
toy	0	0	0	0	0
Udine1	138	953	+590	226	+63
Udine2	81	402	+396	86	+6
Udine3	37	333	+800	71	+91
Udine4	106	106	0	106	0
Udine5	47	518	+1002	46	-2
Udine6	36	285	+691	38	+5
Udine7	64	131	+104	64	0
Udine8	88	606	+588	107	+21
Udine9	56	163	+191	67	+19
UUMCAS_A131	19699	28688	+45	25698	+30
Average rate to #			+447		+99

- *teaspoon-lnps* succeeds in finding **improved bounds** of 5 erlangen instances, test4, and Udine5.
- teaspoon-Inps was able to significantly reduce the rate to +99% on average compared to +447% of clingo.

Related Work

- Besides LNPS [Sugimori+,'24], the use of adaptive LNS in ASP optimization has been explored [Eiter+,AAAI'22,KR'22,AIJ'24].
- ASP has been so far successfully applied in a wide variety of timetabling problems, such as
 - nurse scheduling problem [Alviano+,'22],
 - rehabilitation scheduling problem [Cardellini+,'24],
 - chemotherapy treatment scheduling problem [Dodaro+,'21],
 - personalized course schedule planning [Kahraman+,'19], and
 - shift design problem [Abseher+,'16].

By our results, it would be interesting to explore effective LNPS configurations for these problems.

Conclusion

We presented an approach to solve CB-CTT with LNPS based on ASP.

- teaspoon-Inps was able to reduce the ratio of previously best known bounds from +447% of clingo to +99%.
- We succeeded in finding improved bounds of 8 instances.

All source code is available from: https://github.com/banbaralab/lpnmr2024 • Web

Future work

- Extending our approach to the most recent ITC-2019
- 2 Developing effective LNPS configurations for other timetabling problems, such as nurse scheduling problem

Appendix

Discussion

• In general, it is a time-consuming task to find the best parameter of LNPS configurations.

- The parameter settings were obtained in our preliminary experiments.
- We first measured the distance (i.e., the percentage of change)
 between two consecutive intermediate solutions obtained by teaspoon encoding with clingo.
- We then tested, for each configuration, some percentages (or cardinalities) of destruction less than the distance of *clingo*, taking the variability of LNPS into account.

We plan to extend our approach for adaptive LNPS, which selects in each iteration a potentially more effective destroy operator.

Large Neighborhood Search (LNS; [Shaw,'98])

LNS is an SLS-based metaheuristic that starts with an initial solution and then iteratively tries to find better solutions by alternately **destroying** and **repairing** a current solution.

Pros and Cons

- Since the repair operators can be implemented with systematic solvers, LNS has been shown to be highly compatible with ASP [Eiter+,AAAI-22,KR-22], as well as MIP [Fischetti+,'03; Danna+,'05] and CP [Shaw,'98; Dekker+,'18; Björdal+,'19,'20].
- However, LNS strongly depends on the destroy operators since the undestroyed part is fixed.
- Moreover, in general, LNS cannot guarantee the optimality of solutions.

The main differences of LNPS from LNS

LNS

destroyed

fixed

- The undestroyed part is fixed.
- The percentage of destruction should be sufficiently large such that a neighborhood includes better solutions, and be sufficiently small such that the solver finds one of them.
- The optimality cannot be guaranteed in general.

destroyed not fixed (varying)

- The undestroyed part is not fixed (varying) and can be prioritized.
- 2 Due to this variability, the percentage of destruction can be smaller.
- The optimality can be guaranteed by appropriately designing a stop criterion of prioritized search.

Predicates for specifying LNPS configurations

LNPS configurations define the behavior of the LNPS heuristic, especially for the destroy and prioritized-search operators.

heulingo provides 3 special predicates for specifying LNPS configurations in the config subprogram.

- _lnps_project/2: Used to define what subset of the atoms included in an answer set is subject to LNPS.
 - The atoms via _lnps_project/2 are called **projected atoms**.
- <u>_lnps_destroy/4</u>: Used to define what part of the projected atoms is destroyed and by what percentage (or how many).
- _lnps_prioritize/4: Used to define how the projected atoms in the undestroyed part are prioritized.

Day-Room

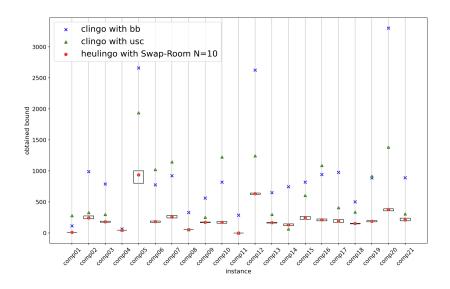
Day-Room randomly selects a single day-room pair. In turn, it destroys parts of a current solution including the selected pair and keeps the undestroyed part as much as possible.

```
1 #program config.
2 _lnps_project(assigned,4).
3 _lnps_destroy(assigned,4,6,n(1)).
4 _lnps_prioritize(assigned,4,1,true).
```

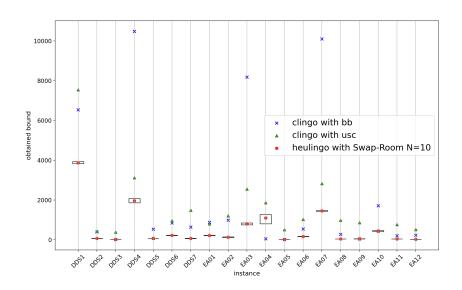
- The difference from Random N is the atom _lnps_destroy(assigned,4,6,n(1)) in Line 3.
- The atom means that parts of a current solution characterized by assigned/4 containing a randomly selected day-room pair are destroyed.
- The 3rd argument $6 = (0110)_2$ represents that all possible pairs (R,D) of assigned(C,R,D,P) are subject to destruction.

Comparison of LNPS configurations 1/3

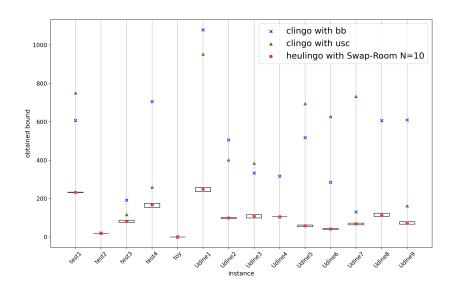
	clii	ngo					teas	oon-Inp					
Instance	bb	usc	Random N		Day-	Day- Swap-Room A							
	55		2%	4%	6%	Period	Room	8%	10%	12%	1	2	3
comp01	115	283	13	11	13	11	11	11	11	11	11	11	11
comp02	989	331	269	249	196	187	244	178	230	218	221	213	216
comp03	791	302	207	207	189	189	194	172	175	194	165	168	174
comp04	66	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49	* 49
comp05	2662	1940	929	964	1011	753	863	1016	803	839	1040	936	978
comp06	777	1025	229	218	221	184	195	185	174	207	166	156	213
comp07	924	1149	196	197	342	163	172	144	243	251	203	233	181
comp08	332	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55	* 55
comp09	563	254	183	175	174	165	161	173	169	160	168	179	156
comp10	821	1229	196	179	195	170	153	127	160	147	147	180	167
comp11	287	* 0	*0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0
comp12	2626	1246	656	649	657	664	677	637	624	642	638	644	622
comp13	652	301	196	187	178	181	196	165	161	160	164	168	166
comp14	746	* 67	158	165	168	169	196	122	119	111	130	113	117
comp15	820	607	206	212	211	194	226	218	223	228	223	224	204
comp16	944	1090	191	199	244	209	217	154	199	177	173	200	173
comp17	979	412	216	218	239	234	238	193	174	207	194	178	214
comp18	503	340	158	153	158	152	158	146	149	144	148	151	143
comp19	890	919	186	198	209	191	205	182	182	189	194	188	173
comp20	3304	1386	362	391	996	403	361	400	359	402	393	451	544
comp21	891	310	255	268	281	238	247	193	197	179	215	166	183

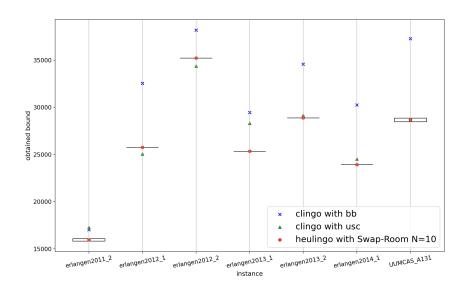

Comparison of LNPS configurations 2/3

	clin	go					teas	poon-In	ps					
Instance	bb	usc		andom	N	Day-	Day-				DP-Swap-Room N			
	00	usc	2%	4%	6%	Period	Room	8%	10%	12%	1	2	3	
DDS1	6536	7544	4119	4063	4251	3923	4118	3805	3837	3746	4367	3823	3557	
DDS2	398	433	76	76	75	76	77	73	72	74	72	70	72	
DDS3	22	391	26	24	22	24	22	22	22	22	22	22	22	
DDS4	10484	3123	3102	3129	3168	2975	2005	1768	1864	1902	1732	1821	1752	
DDS5	538	* 76	* 76	* 76	* 76	* 76	* 76	* 76	* 76	* 76	* 76	* 76	* 76	
DDS6	849	964	208	210	199	175	167	217	214	222	192	258	265	
DDS7	645	1485	107	305	579	122	104	56	64	58	66	64	57	
EA01	887	807	263	240	238	232	250	218	207	208	218	216	212	
EA02	990	1215	134	148	131	140	145	114	113	130	138	140	129	
EA03	8182	2555	1231	1509	1704	996	660	799	757	816	875	878	852	
EA04	52	1873	1083	1607	1591	1018	666	413	807	778	340	353	311	
EA05	19	513	22	20	20	23	23	14	14	14	14	14	14	
EA06	543	1027	221	222	258	189	165	173	152	177	169	159	168	
EA07	10103	2831	1633	2432	2758	1621	1179	1166	1440	1665	1175	1143	1142	
EA08	276	991	123	717	868	150	77	40	40	40	42	40	40	
EA09	48	865	67	54	54	55	59	48	48	48	48	48	48	
EA10	1711	444	367	1272	1609	362	390	379	417	436	439	417	433	
EA11	211	771	51	45	55	45	52	44	40	41	41	40	44	
EA12	234	518	57	40	59	44	49	27	27	27	30	27	27	


Comparison of LNPS configurations 3/3

	clii	ngo					tea	spoon-Ir	ips				
Instance	bb	usc	R	landom 1	V	Day-	Day-	Sw	ap-Room	n N	DP-S	wap-Roo	om N
	DD	usc	2%	4%	6%	Period	Room	8%	10%	12%	1	2	3
erlangen2011_2	17035	17263	15627	16009	15828	15901	15556	15743	15819	15587	15608	15480	15572
erlangen2012_1	32541	25061	25763	25763	25763	25763	25763	25763	25763	25763	25763	25763	25763
erlangen2012_2	38180	34360	35220	35220	35220	35220	35220	35220	35220	35220	35220	35220	35220
erlangen2013_1	29459	28302	25339	25339	25339	25339	25339	25339	25339	25339	25339	25339	25339
erlangen2013_2	34568	29140	28870	28870	28870	28870	28870	28870	28870	28870	28870	28870	28870
erlangen2014_1	30249	24510	23926	23926	23926	23926	23926	23926	23926	23926	23926	23926	23926
test1	607	751	233	232	232	232	232	232	232	232	232	232	237
test2	* 20	* 20	20	20	20	20	20	20	20	20	20	20	20
test3	192	117	104	103	98	99	105	82	76	84	77	86	84
test4	705	260	179	194	181	144	170	147	155	170	165	153	157
toy	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0	* 0
Udine1	1079	953	268	269	518	293	297	247	237	241	226	258	240
Udine2	505	402	100	95	95	90	98	88	96	87	86	92	99
Udine3	333	385	110	82	97	87	106	85	99	80	71	99	83
Udine4	317	* 106	* 106	* 106	* 106	* 106	* 106	* 106	* 106	* 106	* 106	* 106	* 106
Udine5	518	695	67	62	81	84	68	49	55	46	46	53	52
Udine6	285	628	40	46	51	51	53	38	40	38	39	38	40
Udine7	131	733	75	71	76	76	70	69	64	64	67	64	64
Udine8	606	941	126	134	112	118	126	120	107	118	112	134	120
Udine9	610	163	74	73	68	78	77	68	67	69	73	72	78
UUMCAS_A131	37274	28688	27670	28419	28350	27113	27125	28258	28474	28575	25698	26637	27405
#best bounds	5	10	10	12	12	16	15	23	27	21	22	24	23


Comparison of teaspoon-Inps with clingo 1/4


Comparison of teaspoon-Inps with clingo 2/4

Comparison of teaspoon-Inps with clingo 3/4

Comparison of teaspoon-Inps with clingo 4/4

Comparison of LNPS and LNS 1/3

		LNS		LNPS			
Instance	Random N			Random N			
	12%	14%	16%	2%	4%	6%	
comp01	25	25	17	13	11	13	
comp02	310	284	272	269	249	196	
comp03	208	222	214	207	207	189	
comp04	* 49	* 49	* 49	* 49	* 49	* 49	
comp05	1208	1052	1036	929	964	1011	
comp06	265	254	233	229	218	221	
comp07	254	253	213	196	197	342	
comp08	* 55	* 55	* 55	* 55	* 55	* 55	
comp09	201	187	176	183	175	174	
comp10	265	241	242	196	179	195	
comp11	*0	* 0	* 0	* 0	* 0	* 0	
comp12	766	836	960	656	649	657	
comp13	190	213	192	196	187	178	
comp14	202	203	227	158	165	168	
comp15	254	254	253	206	212	211	
comp16	248	220	252	191	199	244	
comp17	273	276	247	216	218	239	
comp18	164	161	174	158	153	158	
comp19	231	222	233	186	198	209	
comp20	417	446	461	362	391	996	
comp21	313	300	284	255	268	281	

Comparison of LNPS and LNS 2/3

		LNS		LNPS			
Instance	Random N			Random N			
	12%	14%	16%	2%	4%	6%	
DDS1	3411	3432	3329	4119	4063	4251	
DDS2	84	94	88	76	76	75	
DDS3	24	28	22	26	24	22	
DDS4	1711	2078	2765	3102	3129	3168	
DDS5	*76	* 76	* 76	* 76	* 76	* 76	
DDS6	237	209	200	208	210	199	
DDS7	129	129	137	107	305	579	
EA01	258	254	264	263	240	238	
EA02	203	192	175	134	148	131	
EA03	550	511	512	1231	1509	1704	
EA04	82	66	74	1083	1607	1591	
EA05	25	23	22	22	20	20	
EA06	238	265	266	221	222	258	
EA07	1232	1447	1899	1633	2432	2758	
EA08	54	44	48	123	717	868	
EA09	73	65	68	67	54	54	
EA10	566	499	538	367	1272	1609	
EA11	109	84	61	51	45	55	
EA12	77	76	70	57	40	59	

Comparison of LNPS and LNS 3/3

	LNS			LNPS			
Instance	Random N			Random N			
	12%	14%	16%	2%	4%	6%	
erlangen2011_2	15250	15357	15294	15627	16009	15828	
erlangen2012_1	25763	25763	25763	25763	25763	25763	
erlangen2012_2	35220	35220	35220	35220	35220	35220	
erlangen2013_1	25339	25339	25339	25339	25339	25339	
erlangen2013_2	28870	28870	28870	28870	28870	28870	
erlangen2014_1	23926	23926	23926	23926	23926	23926	
test1	284	273	289	233	232	232	
test2	31	29	25	20	20	20	
test3	119	115	110	104	103	98	
test4	269	273	268	179	194	181	
toy	*0	* 0	* 0	* 0	*0	* 0	
Udine1	300	288	260	268	269	518	
Udine2	105	108	123	100	95	95	
Udine3	136	127	108	110	82	97	
Udine4	* 106	* 106	* 106	* 106	* 106	* 106	
Udine5	81	82	60	67	62	81	
Udine6	50	55	50	40	46	51	
Udine7	90	78	79	75	71	76	
Udine8	153	155	154	126	134	112	
Udine9	94	92	87	74	73	68	
UUMCAS_A131	23426	23574	23561	27670	28419	28350	
#best bounds	15	14	15	26	25	28	

teaspoon encodings of hard constraints 1/2

H_1 . Lectures

All lectures of each course must be scheduled, and they must be assigned to distinct timeslots.

```
\label{eq:normalized} \texttt{N} \ \{ \texttt{assigned}(\texttt{C},\texttt{D},\texttt{P}) \ : \ \texttt{d}(\texttt{D}), \ \texttt{ppd}(\texttt{P}) \} \ \texttt{N} \ : - \ \texttt{course}(\texttt{C},\_,\texttt{N},\_,\_,\_) \, .
```

H_2 . Conflicts

Lectures of courses in the same curriculum or taught by the same teacher must be all scheduled in distinct timeslots.

```
:- not {assigned(C,D,P) : course(C,T,_,_,_,)} 1,t(T),d(D),ppd(P).
:- not {assigned(C,D,P) : curricula(Cu,C)} 1,cu(Cu),d(D),ppd(P).
```

teaspoon encodings of hard constraints 2/2

H_3 . RoomOccupancy

Two lectures can not take place in the same room in the same timeslot.

```
1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).
```

H_4 . Availability

If the teacher of the course is not available to teach that course at a given timeslot, then no lecture of the course can be scheduled at that timeslot.

```
:- assigned(C,D,P), unavailability_constraint(C,D,P).
```

Soft Constraints 1/5

Soft constraints are divided into two types:

- ones with **constant cost** $(S_3 \text{ and } S_7 S_9)$
- ones with calculated cost $(S_1-S_2 \text{ and } S_4-S_6)$

• S_1 . RoomCapacity

- For each lecture, the number of students that attend the course must be less than or equal the number of seats of all the rooms that host its lectures.
- The penalty points, reflecting the number of students above the capacity, are imposed on each violation.

• S_2 . MinWorkingDays

- The lectures of each course must be spread into a given minimum number of days.
- The penalty points, reflecting the number of days below the minimum, are imposed on each violation.

Soft Constraints 2/5

• S₃. IsolatedLectures

- Lectures belonging to a curriculum should be adjacent to each other in consecutive timeslots.
- For a given curriculum we account for a violation every time there is one lecture not adjacent to any other lecture within the same day.
- Each isolated lecture in a curriculum counts as 1 violation.

• S₄. Windows

- Lectures belonging to a curriculum should not have time windows (periods without teaching) between them.
- For a given curriculum we account for a violation every time there is one window between two lectures within the same day.
- The penalty points, reflecting the length in periods of time window, are imposed on each violation.

Soft Constraints 3/5

• S₅. RoomStability

- All lectures of a course should be given in the same room.
- The penalty points, reflecting the number of distinct rooms but the first, are imposed on each violation.

• S₆. StudentMinMaxLoad

- For each curriculum the number of daily lectures should be within a given range.
- The penalty points, reflecting the number of lectures below the minimum or above the maximum, are imposed on each violation.

Soft Constraints 4/5

• S₇. TravelDistance

- Students should have the time to move from one building to another one between two lectures.
- For a given curriculum we account for a violation every time there is an instantaneous move:
 - two lectures in rooms located in different building in two adjacent periods within the same day.
- Each instantaneous move in a curriculum counts as 1 violation.

• S₈. RoomSuitability

- Some rooms may be not suitable for a given course because of the absence of necessary equipment.
- Each lecture of a course in an unsuitable room counts as 1 violation.

Soft Constraints 5/5

• S₉. DoubleLectures

- Some courses require that lectures in the same day are grouped together (double lectures).
- For a course that requires grouped lectures, every time there is more than one lecture in one day, a lecture non-grouped to another is not allowed.
- Two lectures are grouped if they are adjacent and in the same room.
- Each non-grouped lecture counts as 1 violation.