ASP-based Large Neighborhood Prioritized

Search for Course Timetabling

1 2

Irumi Sugimori! Katsumi Inoue? Hidetomo Nabeshima®
Torsten Schaub* Takehide Soh® Naoyuki Tamura® Mutsunori Banbara®

INagoya University
2National Institute of Informatics

3University of Yamanashi

4Universitat Potsdam

5Kobe University

LPNMR2024@Dallas
October 14th, 2024

1/23

@ Curriculum-based Course Timetabling (CB-CTT) is one of the
most studied educational timetabling problems. CB-CTT has been
used in international timetabling competitions.

e Large Neighborhood Prioritized Search (LNPS; [Sugimori+,'24]!)
is a hybrid between systematic and stochastic local search for solving
Combinatorial Optimization Problems (COPs).

Contributions

We present an approach to solve CB-CTT with LNPS based on ASP.
@ We develop domain-specific LNPS heuristics for CB-CTT solving.

@ The resulting teaspoon-Inps system demonstrates that LNPS can
significantly enhance the performance of ASP for CB-CTT solving.

1Large Neighborhood Prioritized Search for Combinatorial Optimization with Answer Set Programming, KR2024
2/23

Timetabling

Timetabling is the task of assigning a set of entities (e.g., tasks, events,
people) to the limited number of resources over time, subject to a given
set of hard and soft constraints.

@ The typical topics of this area include:

Educational timetabling, Transport timetabling,
Healthcare timetabling, Employee timetabling,
Sports timetabling.

@ International conferences and competitions have been held:

o PATAT: International Series of Conferences on the Practice and
Theory of Automated Timetabling
o ITC: International Timetabling Competitions

Timetabling has received increasing attention from both researchers and
practitioners. J

3/23

https://www.patatconference.org
https://www.patatconference.org/communityService.html

Curriculum-based Course Timetabling (CB-CTT)

CB-CTT is defined as the task of assigning all lectures into a weekly
timetable, subject to a given set of hard and soft constraints.

Hard constraints | Soft constraints

H,. Lectures S1. RoomCapacity S6. StudentMinMaxLoad
H,. Conflicts S». MinWorkingDays ~ S7. TravelDistance

Hs. RoomOccupancy | Ss. IsolatedlLectures Ss. RoomSuitability

H,. Availability S4. Windows So. Doublelectures

Ss. RoomStability

@ Each lecture belonging to a course must take place in a room at a
period on a day.

@ The hard constraints must be strictly satisfied.

@ The soft constraints are not necessarily satisfied but the sum of their
violations should be minimal.

4/23

Formulations

@ Soft constraints are different in each formulation.
@ UD2 was used in ITC-2007. UD5 is the most difficult formulation.

_
C

MO~ TITITIO
N
c

~ TTTITO
w
c

~ = TITITITIO
=
c

N~ TTITTTIQ
o1

Constraint U
H;. Lectures

H,. Conflicts

Hs;. RoomOccupancy

Hs. Availability

S1. RoomCapacity

S>. MinWorkingDays

Ss. IsolatedLectures

Ss. Windows =
Ss. RoomStability -
Se. StudentMinMaxLoad - -
S7. TravelDistance - - -
Ss. RoomSuitability - -
So. DoublelLectures - -

moRTITITIO

[
N 1B
= =

NN

w
= T
|

5/23

teaspoon encoding [Banbara+,’13,’19]

teaspoon encoding is a collection of ASP encodings for CB-CTT solving.

Lessons learned from teaspoon encoding

A proper way of using different atoms depending on constraints can
improve the efficiency of CB-CTT solving.

@ The most direct encoding uses the predicate assigned/4 only.

o The atom assigned(C,R,D,P) represents that a lecture of a course C
is assigned to a room R at a period P on a day D.

@ The teaspoon encoding uses two different predicates assigned/3 and
assigned/4 depending on constraints.

o The atom assigned(C,D,P) drops the room information.

6/23

How does assigned/4 construct the solution?

The partial solution on the left forms the weekly timetables for the two
curricula on the right.

Curl
partial answer set Day0 || Dayil || Day2 || Dpay3 |[Dpay4
0 SceCosC

assigned ("TecCos", rB,0,1). B
assigned("TecCos", rB,0,3). TecCos ArcTec
assigned ("TecCos", rB,1,3). 1 B B
ceizigaed (Moetes !, S8, 2,80, 5| ArcTec | ArcTec | SceCosC SceCosC
assigned ("TecCos", rB,4,3). B rB B B
assigned("SceCosC",rB,3,0). 3/ TecCos | TecCos | TecCos TecCos
assigned("SceCosC",rB,2,2). rB rB B rB
assigned ("SceCosC",rB,4,2). Cur2
assigned ("ArcTec", rB,3,1).
assigned ("ArcTec", rB,0,2). DayO | Day1 Day2 | Day3 | Day4
assigned ("ArcTec", rB,1,2). 0 ‘ ‘ ‘
assigned ("Geotec", rA,4,1).
assigned ("Geotec", rA,0,2). 1 Tercé:os Ger%tec
assigned("Geotec", rA,1,2). Geotec || Geotec || Geotec Geotec
assigned ("Geotec", rA,2,2). 2 A A A A
assigned("Geotec", rA,4,2). 3| TecCos | TecCos | TecCos TecCos

y rB rB rB rB

7/23

@ teaspoon demonstrated that ASP can compete with state-of-the-art
solving techniques on course timetabling, including
e metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.
@ In fact, teaspoon managed to either improve or reproduce the best
known bounds for 182 out of 305 combinations in total (all 61
instances in 5 formulations).

8/23

@ teaspoon demonstrated that ASP can compete with state-of-the-art
solving techniques on course timetabling, including
e metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.

@ In fact, teaspoon managed to either improve or reproduce the best
known bounds for 182 out of 305 combinations in total (all 61
instances in 5 formulations).

Limitation of teaspoon

Especially for UD5, systematic search of ASP solvers quickly falls into
saturated solutions for many instances.

8/23

@ teaspoon demonstrated that ASP can compete with state-of-the-art
solving techniques on course timetabling, including
e metaheuristic algorithms, integer programming, SAT/MaxSAT, etc.

@ In fact, teaspoon managed to either improve or reproduce the best
known bounds for 182 out of 305 combinations in total (all 61
instances in 5 formulations).

Limitation of teaspoon

Especially for UD5, systematic search of ASP solvers quickly falls into
saturated solutions for many instances.

Idea of this research

We tackle this problem issue by taking advantage of Large
Neighborhood Prioritized Search (LNPS).

8/23

Large Neighborhood Prioritized Search [sugimori+,kR"24]

LNPS is a metaheuristic that starts with an initial solution and then
iteratively tries to find better solutions by alternately destroying a current
solution and reconstructing it with prioritized search.

Algorithm 1 LNPS

Input: a feasible (current) solution x
Output: the best solution x*

@ The prioritized search is a
systematic search for which its

1 x* +x
branching heuristic can be 2: while stop criterion is not met do
configured or customized. 3: x' « prioritized-search(destroy(x))
4: if accept(x', x) then
@ The prioritized search can be > X xt
. . 6 end if
implemented with 7 if c(xt) < c(x*) then
heuristic-driven ASP solving 8 o xt
(viz. #heuristic statement). o. endif
10: end while

11: return x* 9/23

heulingo: an ASP-based implementation of LNPS

@ Variability: heulingo provides a flexible search without strongly
depending on the destroy operators compared to traditional LNS
[Shaw, 98], since the undestroyed part is not fixed.

o Optimality: heulingo can guarantee the optimality of solutions.
@ Domain heuristics: heulingo allows for easy incorporation of
domain-specific heuristics in a declarative way.

o Efficiency: heulingo has demonstrated that LNPS can significantly
enhance the solving performance of ASP on hard optimization
problems, such as traveling salesperson, social golpher, sudoku
generation, weighted strategic company and so on.

We focus on the development of domain-specific LNPS heuristics for
efficient CB-CTT solving. J

10/23

teaspoon-Inps approach (proposal)

We develop an approach to solve CB-CTT with ASP-based LNPS.)

CB-CTT : CB-CTT
instance | | converter [ASP facts e solution

teaspoon LNPS
encoding algorithm

: LNPS heulingo

iconfiguration ; ¢

© The resulting teaspoon-Inps solver accepts a CB-CTT instance and
converts it into ASP facts.

@ |In turn, these facts are combined with teaspoon encoding and an
LNPS configuration, which are afterward solved by heulingo.

@ LNPS configurations define the behavior of the LNPS heuristic,
especially for the destroy and prioritized-search operators.

11/23

LNPS configurations

We develop five LNPS configurations for CB-CTT solving. J

@ Random is the simplest domain-independent heuristic that randomly
destroys a current solution.

@ Day-Period and Day-Room are domain-specific heuristics inspired
by the traditional LNS heuristic for CB-CTT solving [Kiefer+,"17].

@ Swap-Room and DP-Swap-Room are novel domain-specific
configurations for CB-CTT solving, taking advantage of prioritized
search.

12/23

Random N randomly destroys N% of a current solution and keeps the
undestroyed part as much as possible in each iteration of LNPS.

#program config.

_lnps_project (assigned,4).
_lnps_destroy(assigned,4,15,p(n)).
_lnps_prioritize (assigned,4,1,true).

A W=

@ The atom _lnps_project(assigned,4) means that the atoms of
assigned/4 belonging to an answer set are subject to LNPS.

@ The atom _lnps_destroy(assigned,4,15,p(n)) means that n%
of a current solution characterized by assigned/4 are destroyed.

e The 3rd argument 15 = (1111), represents that all possible tuples
(C,R,D,P) of assigned(C,R,D,P) are subject to destruction.

13/23

Random N randomly destroys N% of a current solution and keeps the
undestroyed part as much as possible in each iteration of LNPS.

#program config.

_lnps_project (assigned,4).
_lnps_destroy(assigned,4,15,p(n)).
_lnps_prioritize(assigned,4,1,true).

AW

@ The atom _lnps_prioritize(assigned,4,1,true) means that
the undestroyed part is kept as much as possible.

@ Technically, this atom corresponds to clingo's heuristic statement
#heuristic assigned(C,R,D,P):Body. [1,truel.

13/23

Day-Period

Day-Period randomly selects a single day-period pair. In turn, it destroys
parts of a current solution including the selected pair and keeps the
undestroyed part as much as possible.

#program config.

_lnps_project (assigned,4).
_lnps_destroy(assigned,4,3,n(1)).
_lnps_prioritize(assigned,4,1,true).

A W=

@ The difference from Random N is the fact in Line 3.

@ The fact means that parts of a current solution characterized by

assigned/4 containing a randomly selected day-period pair are
destroyed.

o The 3rd argument 3 = (0011), represents that all possible pairs (D,P)
of assigned(C,R,D,P) are subject to destruction.

14/23

@ Swap-Room N is similar to Random N, but tries to keep
course-day-period assignments as much as possible.

@ This is designed to find better solutions by swapping rooms in the
current solution.

#program config.

_lnps_project (assigned,4).
_lnps_destroy(assigned,4,15,p(n)).
_lnps_prioritize(assigned,4,1,true).
_lnps_project (assigned,3).
_lnps_destroy(assigned,3,7,p(0)).
_lnps_prioritize(assigned,3,1,true).

~NOo o~ N+

@ The difference from Random N is the addition of Lines 5—7.

@ The additional facts mean that the course-day-period assignments
represented by assigned/3 are kept as much as possible.

15/23

DP-Swap-Room N

@ DP-Swap-Room N is similar to Swap-Room N, but randomly selects
N day-period pairs and destroys all atoms including any selected pair.

@ This is designed to find better solutions by swapping rooms at N/
day-period pairs in the current solution.

#program config.

_lnps_project (assigned ,4).
_lnps_destroy(assigned,4,3,n(n)).
_lnps_prioritize (assigned,4,1,true).
_lnps_project (assigned,3).
_lnps_destroy(assigned,3,7,p(0)).
_lnps_prioritize(assigned,3,1,true).

~No o~ N

@ The difference from Swap-Room N is the fact in Line 3.

@ The fact means that parts of a current solution containing any one of

randomly selected n day-period pairs are destroyed.
16/23

We carry out experiments to evaluate our teaspoon-Inps approach. J

@ We use all 61 instances of standard CB-CTT benchmark set within
the most difficult UD5 formulation.

@ ASP encoding: teaspoon encoding [Banbara+,'13,'19]
@ We compare
o clingo-5.6.2 with the two best options [Banbara+,'19].
o teaspoon-Inps with the five configurations:
@ Random N with 3 different percentages N € {2,4,6}
@ Day-Period
© Day-Room
@ Swap-Room N with 3 different percentages N € {8,10,12}
@ DP-Swap-Room N with 3 different cardinalities N € {1,2,3}

@ Time limit: 1 hour for each

17/23

Comparison of LNPS configurations on ITC-2007

clingo teaspoon-Inps
Instance bb usc Random N Day- ‘ Day- l Swap-Room N DP-Swap-Room N
2% 4% 6% | Period | Room | 8% 10% 12% 1 2 3
compO01 115 283 13 11 13 11 11 11 11 11 11 11 11
comp02 989 331 | 269 249 196 187 244 178 230 218 221 213 216
comp03 791 302 | 207 207 189 189 194 172 175 194 165 168 174
comp04 66 “49 | *49 49 *49 *49 *49 Y49 49 *49 49 *49 *49
comp05 2662 1940 | 929 964 1011 753 863 1016 803 839 1040 936 978
comp06 777 1025 | 229 218 221 184 195 185 174 207 166 156 213
comp07 924 1149 | 196 197 342 163 172 144 243 251 203 233 181
comp08 332 *55 | *55 *55 *55 *55 *55 *55 *B55 *5§ *55 *55 *55
comp09 563 254 | 183 175 174 165 161 173 169 160 168 179 156
compl0 821 1229 | 196 179 195 170 153 127 160 147 147 180 167
compll 287 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
compl2 2626 1246 | 656 649 657 664 677 637 624 642 638 644 622
compl3 652 301 | 196 187 178 181 196 165 161 160 164 168 166
compl4 746 *67 | 158 165 168 169 196 122 119 111 130 113 117
compl5 820 607 | 206 212 211 194 226 218 223 228 223 224 204
compl6 944 1090 | 191 199 244 209 217 154 199 177 173 200 173
compl? 979 412 | 216 218 239 234 238 193 174 207 194 178 214
compl8 503 340 | 158 153 158 152 158 146 149 144 148 151 143
compl9 890 919 | 186 198 209 191 205 182 182 189 194 188 173
comp20 3304 1386 | 362 391 996 403 361 400 359 402 393 451 544
comp2l 891 310 | 255 268 281 238 247 193 197 179 215 166 183
#best bounds 0 4 3 4 3 6 4 8 6 5 5 6 8

@ Swap-Room N = 8 and DP-Swap-Room N = 3 found the most
number of best solutions.

18/23

Comparison with other approaches 1/3

Instance Best known clingo teaspoon-Inps

bound (1) Obtained bound Rate to § (%) Obtained bound Rate to § (%)
comp01 11 115 +945 11 0
comp02 130 331 +154 178 +36
comp03 142 302 +112 165 +16
comp04 49 49 0 49 0
comp05 570 1940 +240 753 +32
comp06 85 7T +814 156 +83
comp07 42 924 +2100 144 +242
comp08 55 55 0 55 0
comp09 150 254 +69 156 +4
compl0 72 821 +1040 127 +76
compll 0 0 0 0 0
compl2 483 1246 +157 622 +28
compl3 147 301 +104 160 +8
compl4 67 67 0 111 +65
compl5 176 607 +244 194 +10
compl6 96 944 +883 154 +60
compl7 155 412 +165 174 +12
compl8 137 340 +148 143 +4
compl9 125 890 +612 173 +38
comp20 124 1386 +1017 359 +189
comp21 151 310 +105 166 +9

@ The previous best known bounds (f) have been obtained by

metaheuristic algorithms, ILP, SAT /MaxSAT, etc.

obtained bound—§

@ We calculate as the rate of distance to the best

known bounds.
19/23

Comparison with other approaches 2/3

Instance Best known clingo teaspoon-Inps
bound () Obtained bound Rate to § (%) Obtained bound Rate to § (%)
DDS1 1831 6536 +256 3557 +94
DDS2 64 398 +521 70 +9
DDS3 22 22 0 22 0
DDS4 96 3123 +3153 1732 +1704
DDS5 76 76 0 76 0
DDS6 96 849 +784 167 +73
DDS7 52 645 +1140 56 +7
EA01 196 807 +311 207 +5
EA02 128 990 +673 113 -11
EA03 920 2555 +2738 660 +633
EA04 18 52 +188 311 +1627
EA05 14 19 +35 14 0
EA06 99 543 +448 152 +53
EA07 205 2831 +1280 1142 +457
EA08 40 276 +590 40 0
EA09 48 48 0 48 0
EA10 93 444 +377 362 +289
EA11l 40 211 +427 40 0
EA12 27 234 +766 27 0

@ teaspoon-Inps succeeds in finding an improved bound of EA02.

20/23

Comparison with other approaches 3/3

Instance Best known clingo teaspoon-Inps
bound (#) Obtained bound Rate to ff (%) | Obtained bound Rate to f (%)
erlangen2011_2 12353 17035 +37 15480 +25
erlangen2012_1 28236 25061 -11 25763 -8
erlangen2012_2 37103 34360 -7 35220 -5
erlangen2013_1 28997 28302 -2 25339 -12
erlangen2013_2 30533 29140 -4 28870 -5
erlangen2014_1 28655 24510 -14 23926 -16
testl 232 607 +161 232 0
test2 20 20 0 20 0
test3 68 117 +72 76 +11
testd 166 260 +56 144 -13
toy 0 0 0 0 0
Udinel 138 953 +590 226 +63
Udine2 81 402 +396 86 +6
Udine3 37 333 4800 71 +91
Udine4 106 106 0 106 0
Udineb 47 518 41002 46 -2
Udine6 36 285 +691 38 +5
Udine7 64 131 +104 64 0
Udine8 88 606 +588 107 +21
Udine9 56 163 +191 67 +19
UUMCAS_A131 19699 28688 +45 25698 +30
Average rate to { +447 +99

@ teaspoon-Inps succeeds in finding improved bounds of 5 erlangen
instances, test4, and Udineb.
@ teaspoon-Inps was able to significantly reduce the rate to +99% on

average compared to +447% of clingo.
21/23

Related Work

@ Besides LNPS [Sugimori+,'24], the use of adaptive LNS in ASP
optimization has been explored [Eiter+,AAAI'22,KR'22,AlJ'24].

@ ASP has been so far successfully applied in a wide variety of
timetabling problems, such as

nurse scheduling problem [Alviano+,'22],

rehabilitation scheduling problem [Cardellini+,'24],

chemotherapy treatment scheduling problem [Dodaro+,'21],

personalized course schedule planning [Kahraman+,'19], and

shift design problem [Abseher+,'16].

By our results, it would be interesting to explore effective LNPS
configurations for these problems. J

22/23

Conclusion

We presented an approach to solve CB-CTT with LNPS based on ASP.)

@ teaspoon-Inps was able to reduce the ratio of previously best known
bounds from +447% of clingo to +99%.

@ We succeeded in finding improved bounds of 8 instances.

All source code is available from:
https://github.com/banbaralab/lpnmr2024 J

© Extending our approach to the most recent ITC-2019

@ Developing effective LNPS configurations for other timetabling
problems, such as nurse scheduling problem

23/23

https://github.com/banbaralab/lpnmr2024

Appendix

Discussion

® In general, it is a time-consuming task to find the best parameter of
LNPS configurations.

@ The parameter settings were obtained in our preliminary experiments.

@ We first measured the distance (i.e., the percentage of change)
between two consecutive intermediate solutions obtained by teaspoon
encoding with clingo.

@ We then tested, for each configuration, some percentages (or
cardinalities) of destruction less than the distance of clingo, taking
the variability of LNPS into account.

We plan to extend our approach for adaptive LNPS, which selects in each
iteration a potentially more effective destroy operator. J

25/23

Large Neighborhood Search (LNS; [Shaw,’98])

LNS is an SLS-based metaheuristic that starts with an initial solution and
then iteratively tries to find better solutions by alternately destroying and
repairing a current solution.

Pros and Cons

o © Since the repair operators can be implemented with systematic
solvers, LNS has been shown to be highly compatible with
ASP [Eiter+,AAAI-22,KR-22], as well as MIP [Fischetti+,"03;
Danna+,'05] and CP [Shaw,'98; Dekker+,'18; Bjérdal+,'19,'20].

o @ However, LNS strongly depends on the destroy operators since the
undestroyed part is fixed.

o & Moreover, in general, LNS cannot guarantee the optimality of
solutions.

26/23

The main differences of LNPS from LNS

LNS LNPS

© The undestroyed part is fixed. © The undestroyed part is not

© The percentage of destruction fixed (varying) and can be
should be sufficiently large prioritized.
such that a neighborhood @ Due to this variability, the
includes better solutions, and percentage of destruction can
be sufficiently small such that be smaller.
the solver finds one of them. © The optimality can be

© The optimality cannot be guaranteed by appropriately
guaranteed in general. designing a stop criterion of

prioritized search.

27/23

Predicates for specifying LNPS configurations

LNPS configurations define the behavior of the LNPS heuristic,
especially for the destroy and prioritized-search operators.

heulingo provides 3 special predicates for specifying LNPS configurations
in the config subprogram.
@ _lnps_project/2: Used to define what subset of the atoms included
in an answer set is subject to LNPS.
o The atoms via _lnps_project/2 are called projected atoms.

@ _Inps_destroy/4: Used to define what part of the projected atoms
is destroyed and by what percentage (or how many).

@ _Inps_prioritize/4: Used to define how the projected atoms in
the undestroyed part are prioritized.

28/23

Day-Room randomly selects a single day-room pair. In turn, it destroys
parts of a current solution including the selected pair and keeps the
undestroyed part as much as possible.

1 #program config.
2 _1lnps_project(assigned,4).
3 _lnps_destroy(assigned,4,6,n(1)).
4 _lnps_prioritize(assigned,4,1,true).
v
@ The difference from Random N is the atom

_lnps_destroy(assigned,4,6,n(1)) in Line 3.
@ The atom means that parts of a current solution characterized by
assigned/4 containing a randomly selected day-room pair are
destroyed.
The 3rd argument 6 = (0110), represents that all possible pairs (R,D)
of assigned(C,R,D,P) are subject to destruction.

29/23

Comparison of LNPS configurations 1/3

clingo teaspoon-Inps
Instance bb usc Random N Day- Day- l Swap-Room N DP-Swap-Room N
2% 4% 6% | Period | Room | 8% 10% 12% 1 2 3
compO01 115 283 13 11 13 11 11 11 11 11 11 11 11

comp02 989 331 | 269 249 196 187 244 178 230 218 221 213 216
comp03 791 302 | 207 207 189 189 194 172 175 194 165 168 174
comp04 66 F49 | *49 49 *49 *49 *49 49 *49 49 *49 *49 *49
comp05 | 2662 1940 | 929 964 1011 753 863 1016 803 839 1040 936 978
comp06 777 1025 | 229 218 221 184 195 185 174 207 166 156 213
comp07 924 1149 | 196 197 342 163 172 144 243 251 203 233 181
comp08 332 55 | *55 55 *55 *55 *55 *55 *55 *55 *55 *55 *55
comp09 563 254 | 183 175 174 165 161 173 169 160 168 179 156
compl0 821 1229 | 196 179 195 170 153 127 160 147 147 180 167
compll 287 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
compl2 | 2626 1246 | 656 649 657 664 677 637 624 642 638 644 622
compl3 652 301 | 196 187 178 181 196 165 161 160 164 168 166
compl4d 746 67 | 158 165 168 169 196 122 119 111 130 113 117
compl5 820 607 | 206 212 211 194 226 218 223 228 223 224 204
compl6 944 1090 | 191 199 244 209 217 154 199 177 173 200 173
compl? 979 412 | 216 218 239 234 238 193 174 207 194 178 214
compl8 503 340 | 158 153 158 152 158 146 149 144 148 151 143
compl9 890 919 | 186 198 209 191 205 182 182 189 194 188 173
comp20 | 3304 1386 | 362 391 996 403 361 400 359 402 393 451 544
comp21 891 310 | 255 268 281 238 247 193 197 179 215 166 183

30/23

Comparison of LNPS configurations 2/3

clingo teaspoon-Inps
Instance bb usc Random N Day- Day- Swap-Room N DP-Swap-Room N
2% 4% 6% | Period | Room | 8% 10% 12% 1 2 3
DDS1 6536 7544 | 4119 4063 4251 3923 4118 3805 3837 3746 4367 3823 3557
DDS2 398 433 76 76 75 76 7 73 72 74 72 70 72
DDS3 22 391 26 24 22 24 22 22 22 22 22 22 22
DDS4 10484 3123 | 3102 3129 3168 2975 2005 1768 1864 1902 1732 1821 1752
DDS5 538 *76 | *76 *76 *76 *76 *76 76 76 76 76 ‘76 *76
DDS6 849 964 208 210 199 175 167 217 214 222 192 258 265
DDS7 645 1485 107 305 579 122 104 56 64 58 66 64 57
EAO01 887 807 263 240 238 232 250 218 207 208 218 216 212
EA02 990 1215 134 148 131 140 145 114 113 130 138 140 129
EA03 8182 2555 | 1231 1509 1704 996 660 799 757 816 875 878 852
EA04 52 1873 | 1083 1607 1591 1018 666 413 807 778 340 353 311
EAO05 19 513 22 20 20 23 23 14 14 14 14 14 14
EA06 543 1027 221 222 258 189 165 173 152 177 169 159 168
EAOQ7 10103 2831 | 1633 2432 2758 1621 1179 1166 1440 1665 1175 1143 1142
EA08 276 991 123 717 868 150 7 40 40 40 42 40 40
EA09 48 865 67 54 54 55 59 48 48 48 48 48 48
EA10 1711 444 | 367 1272 1609 362 390 379 417 436 439 417 433
EA1l 211 771 51 45 55 45 52 44 40 41 41 40 44
EA12 234 518 57 40 59 44 49 27 27 27 30 27 27

31/23

Comparison of LNPS configurations 3/3

clingo teaspoon-Inps

Instance bb usc Random N Day- | Day- Swap-Room N DP-Swap-Room N

2% 4% 6% | Period | Room | 8% 10% 12% 1 2 3
erlangen2011_2 | 17035 17263 | 15627 16009 15828 15901 15556 15743 15819 15587 15608 15480 15572
erlangen2012_1 | 32541 25061 | 25763 25763 25763 25763 25763 25763 25763 25763 25763 25763 25763
erlangen2012_2 | 38180 34360 | 35220 35220 35220 35220 35220 35220 35220 35220 35220 35220 35220
erlangen2013_1 | 29459 28302 | 25339 25339 25339 25339 25339 25339 25339 25339 25339 25339 25339
erlangen2013_2 | 34568 29140 | 28870 28870 28870 28870 28870 28870 28870 28870 28870 28870 28870
erlangen2014_1 | 30249 24510 | 23926 23926 23926 23926 23926 23926 23926 23926 23926 23926 23926
testl 607 751 233 232 232 232 232 232 232 232 232 232 237
test2 *20 *20 20 20 20 20 20 20 20 20 20 20 20
test3 192 117 104 103 98 99 105 82 76 84 77 86 84
test4 705 260 179 194 181 144 170 147 155 170 165 153 157
toy *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0
Udinel 1079 953 268 269 518 293 297 247 237 241 226 258 240
Udine2 505 402 100 95 95 90 98 88 96 87 86 92 99
Udine3 333 385 110 82 97 87 106 85 99 80 71 99 83
Udine4 317 *106 | *106 *106 *106 *106 *106 *106 *106 *106 *106 *106 *106
Udine5 518 695 67 62 81 84 68 49 55 46 46 53 52
Udine6 285 628 40 46 51 51 53 38 40 38 39 38 40
Udine7 131 733 75 71 76 76 70 69 64 64 67 64 64
Udine8 606 941 126 134 112 118 126 120 107 118 112 134 120
Udine9 610 163 74 73 68 78 7 68 67 69 73 72 78
UUMCAS_A131 | 37274 28688 | 27670 28419 28350 27113 27125 28258 28474 28575 25698 26637 27405
F#£best bounds 5 10 10 12 12 16 15 23 27 21 22 24 23

32/23

Comparison of teaspoon-Inps with clingo 1/4

x clingo with bb X
s clingo with usc
3000 8 X
e heulingo with Swap-Room N=10
x x
2500
'g 2000 i
5
o
Qo
b=
[
< 1500
8 A
8

1000 x x
G I RS
% x x

% A
500 x
A
A A4 x % i A b
B == 3 —— e = == oo
% - o= ae ——
i

——

S o> ‘gz > \J \eJ © " 2 J o "
S 3 34 3 S Q> S 3 Q> S » v
L L L L L L L L L L L
s (‘o@ co& (‘o@ co& (‘o@ co& (‘o@ co& (‘o@ co&

instance

33/23

Comparison of teaspoon-Inps with clingo 2/4

obtained bound

10000

8000

6000

4000

2000

=

® A
-

x
—

—o—

x clingo with bb
4 clingo with usc
e heulingo with Swap-Room N=10

==

A ry
x 4 A
£ ¥ =2 4 A
== A
- x X

—— T = x — = —— —— 3 ——

> H D P S L S S & & &
QQ 00 QQ 00 00 00 QQ F F & F F &

SR TS TN B
ISR S SN NN
F F & F F &
instance

34/23

Comparison of teaspoon-Inps with clingo 3/4

x x clingo with bb
1000 s clingo with usc
] e heulingo with Swap-Room N=10
800
'y
A
x A
o
S A
S 600 x x x
8
o
£ x T
]
3
[=}
400 1 A
x x
'Y [i ¥
—_—
200 x
[z} A
A X]
—_—— U —a—
—e
== == ==
e =
0 —i—
S aQ > > oY > % > > o © A > Y
S > S & 3 & & & & & & & & &
& & & & Qb\(\ \@\(\ \@\0 O&Q \@\(\ Qb‘(\ \3&0 \@\(\ Qb‘(\

instance

35/23

Comparison of teaspoon-Inps with clingo 4/4

x
x
35000 —
A x
x
30000 ¥
he=} x
2 —— ——
-8 'y
j
T —_—
5 25000 A f i
. S
20000
x clingo with bb
s s+ clingo with usc
—— e heulingo with Swap-Room N=10
15000
12 21 22 31 32 Al 131
ertangemOM " agen2032 i ngen2032Engen2013-tngen203ngen20 - pucas A
instance

36/23

Comparison of LNPS and LNS 1/3

LNS LNPS

Instance Random N Random N

12% 14% 16% 2% 4% 6%
comp01 25 25 17 13 11 13
comp02 310 284 272 269 249 196
comp03 208 222 214 207 207 189
comp04 *49 *49 *49 *49 *49 *49
comp05 1208 1052 1036 929 964 1011
comp06 265 254 233 229 218 221
comp07 254 253 213 196 197 342
comp08 *55 *55 *55 *55 *55 *55
comp09 201 187 176 183 175 174
compl0 265 241 242 196 179 195
compll *0 *0 *0 *0 *0 *0
compl2 766 836 960 656 649 657
compl3 190 213 192 196 187 178
compl4 202 203 227 158 165 168
compl5s 254 254 253 206 212 211
compl6 248 220 252 191 199 244
compl7 273 276 247 216 218 239
compl8 164 161 174 158 153 158
compl9 231 222 233 186 198 209
comp20 417 446 461 362 391 996
comp21 313 300 284 255 268 281

37/23

Comparison of LNPS and LNS 2/3

LNS LNPS
Instance Random N Random N
12% 14% 16% 2% 4% 6%
DDS1 3411 3432 3329 4119 4063 4251
DDS2 84 94 88 76 76 75
DDS3 24 28 22 26 24 22
DDS4 1711 2078 2765 3102 3129 3168
DDS5 *76 *76 *76 *76 *76 *76
DDS6 237 209 200 208 210 199
DDS7 129 129 137 107 305 579
EAO1 258 254 264 263 240 238
EA02 203 192 175 134 148 131
EA03 550 511 512 1231 1509 1704
EA04 82 66 74 1083 1607 1591
EA05 25 23 22 22 20 20
EA06 238 265 266 221 222 258
EA07 1232 1447 1899 1633 2432 2758
EA08 54 44 43 123 717 868
EA09 73 65 68 67 54 54
EA10 566 499 538 367 1272 1609
EAll 109 84 61 51 45 55
EA12 77 76 70 57 40 59

38/23

Comparison of LNPS and LNS 3/3

LNS LNPS
Instance Random N Random N
12% 14% 16% 2% 4% 6%

erlangen2011_2 15250 15357 15294 15627 16009 15828
erlangen2012_1 25763 25763 25763 25763 25763 25763
erlangen2012_2 35220 35220 35220 35220 35220 35220
erlangen2013_1 25339 25339 25339 25339 25339 25339
erlangen2013_2 28870 28870 28870 28870 28870 28870
erlangen2014_1 23926 23926 23926 23926 23926 23926
testl 284 273 289 233 232 232
test2 31 29 25 20 20 20
test3 119 115 110 104 103 98
test4 269 273 268 179 194 181
toy *0 *0 *0 *0 *0 *0
Udinel 300 288 260 268 269 518
Udine2 105 108 123 100 95 95
Udine3 136 127 108 110 82 97
Udine4 *106 *106 *106 *106 *106 *106
Udineb 81 82 60 67 62 81
Udine6 50 55 50 40 46 51
Udine7 90 78 79 75 71 76
Udine8 153 155 154 126 134 112
Udine9 94 92 87 74 73 68
UUMCAS_A131 23426 23574 23561 27670 28419 28350
#best bounds 15 14 15 26 25 28

39/23

teaspoon encodings of hard constraints 1/2

All lectures of each course must be scheduled, and they must be assigned
to distinct timeslots.

N {assigned(C,D,P) : d(D), ppd(P)} N :- course(C,_,N,_,_,_). J

Lectures of courses in the same curriculum or taught by the same teacher
must be all scheduled in distinct timeslots.

:- not {assigned(C,D,P) : course(C,T,_,_,_,_)} 1,t(T),d(D),ppd(P).
:- not {assigned(C,D,P) : curricula(Cu,C)} 1,cu(Cu),d(D),ppd(P).

40/23

teaspoon encodings of hard constraints 2/2

H3. RoomQOccupancy

Two lectures can not take place in the same room in the same timeslot.

1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

H,. Availability

If the teacher of the course is not available to teach that course at a given
timeslot, then no lecture of the course can be scheduled at that timeslot.

:- assigned(C,D,P), unavailability_constraint(C,D,P). J

41/23

Soft Constraints 1/5

Soft constraints are divided into two types:
@ ones with constant cost (S3 and $7—S9)
@ ones with calculated cost (51—S, and S4—Ss)

@ 51. RoomCapacity
o For each lecture, the number of students that attend the course must
be less than or equal the number of seats of all the rooms that host its
lectures.
o The penalty points, reflecting the number of students above the
capacity, are imposed on each violation.
@ S;. MinWorkingDays

o The lectures of each course must be spread into a given minimum
number of days.

o The penalty points, reflecting the number of days below the minimum,
are imposed on each violation.

42/23

Soft Constraints 2/5

@ S3. IsolatedLectures
o Lectures belonging to a curriculum should be adjacent to each other in
consecutive timeslots.
o For a given curriculum we account for a violation every time there is
one lecture not adjacent to any other lecture within the same day.
o Each isolated lecture in a curriculum counts as 1 violation.

@ S;,. Windows
o Lectures belonging to a curriculum should not have time windows
(periods without teaching) between them.
o For a given curriculum we account for a violation every time there is
one window between two lectures within the same day.
o The penalty points, reflecting the length in periods of time window, are
imposed on each violation.

43/23

Soft Constraints 3/5

@ S5. RoomStability
o All lectures of a course should be given in the same room.
o The penalty points, reflecting the number of distinct rooms but the
first, are imposed on each violation.
@ Sg. StudentMinMaxLoad
o For each curriculum the number of daily lectures should be within a

given range.
o The penalty points, reflecting the number of lectures below the
minimum or above the maximum, are imposed on each violation.

44/23

Soft Constraints 4/5

@ S7. TravelDistance

o Students should have the time to move from one building to another
one between two lectures.

e For a given curriculum we account for a violation every time there is an
instantaneous move:

@ two lectures in rooms located in different building in two adjacent
periods within the same day.

e Each instantaneous move in a curriculum counts as 1 violation.
@ Sg. RoomSuitability

e Some rooms may be not suitable for a given course because of the
absence of necessary equipment.

o Each lecture of a course in an unsuitable room counts as 1 violation.

45/23

Soft Constraints 5/5

@ Sg. DoubleLectures
e Some courses require that lectures in the same day are grouped
together (double lectures).
o For a course that requires grouped lectures, every time there is more

than one lecture in one day, a lecture non-grouped to another is not
allowed.

o Two lectures are grouped if they are adjacent and in the same room.
o Each non-grouped lecture counts as 1 violation.

46/23

	Appendix

