Hamiltonian Cycle Reconfiguration with Answer Set Programming

Takahiro Hirate¹ <u>Mutsunori Banbara</u>¹ Katsumi Inoue² Xiao-Nan Lu³ Hidetomo Nabeshima⁴ Torsten Schaub⁵ Takehide Soh⁶ Naoyuki Tamura⁶

 $^1{\rm Nagoya~University~}^2{\rm National~Institute}$ of Informatics $^3{\rm Gifu~University}$ $^4{\rm University}$ of Ymanashi $^5{\rm Universität~Potsdam~}^6{\rm Kobe~University}$

JELIA2023@Dresden

Combinatorial reconfiguration

Combinatorial reconfiguration is to study the structure and properties (e.g., reachability) of solution spaces of combinatorial problems.

 Combinatorial Reconfiguration Problems (CRPs) are defined as the task of deciding, for a given combinatorial problem and two of its feasible solutions, whether one is reachable from another via a sequence of adjacent feasible solutions.

Combinatorial reconfiguration

Combinatorial reconfiguration is to study the structure and properties (e.g., reachability) of solution spaces of combinatorial problems.

- Combinatorial Reconfiguration Problems (CRPs) are defined as the task of deciding, for a given combinatorial problem and two of its feasible solutions, whether one is reachable from another via a sequence of adjacent feasible solutions.
- A great effort has been made to investigate the theoretical aspects of CRPs over the last decade.
- For many NP-complete problems, their reconfigurations have been shown to be PSPACE-complete:
 - SAT reconfiguration [Gopalan+,'09]
 - Graph coloring reconfiguration [Bonsma+,'09]
 - Hamiltonian cycle reconfiguration [takaoka,'18], and many others.

However, little attention has been paid so far to its practical aspects.

Hamiltonian Cycle Reconfiguration Problem (HCRP)

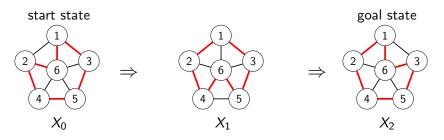
Question

How many transitions we need under the transition constraint 3-opt, which enforces that exact 3 edges differ in each transition $X_t \Rightarrow X_{t+1}$?

Hamiltonian Cycle Reconfiguration Problem (HCRP)

Question

How many transitions we need under the transition constraint 3-opt, which enforces that exact 3 edges differ in each transition $X_t \Rightarrow X_{t+1}$?



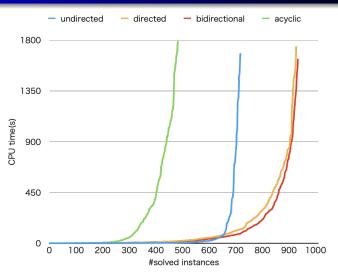
- The goal state is reached from the start state with 2 transitions.
- Each state X_i satisfies the constraints of HCP.
- Each transition (\Rightarrow) satisfies the *k*-opt constraint, in this case k = 3.
 - From X_0 to X_1 , three edges 1–6, 2–6, and 4–5 are removed.

Part 1: Main contributions for HCP

We develop two ASP encodings for undirected HCP solving.

- bidirectional encoding and acyclic encoding
- They are based on the idea of a SAT encoding [Soh+,JELIA'14] that transforms undirected graph problems into directed ones by mapping each edge u − v to one of its directional edges u → v and v → u.
- Our empirical analysis considers <u>all 1,001 HCP instances</u>, which are publicly available from Flinders Hamiltonian Cycle Project (FHCP)
- The bidirectional encoding performs better than traditional encodings.
- We establish the competitiveness of our declarative approach by contrasting it to
 - 1 the award-winning solvers of the FHCP challenge,
 - 2 the 1st place solver of XCSP competition,
 - 3 a state-of-the-art SAT encoding for HCP solving [Heule, '21].

Cactus plot of HCP solving



- The bidirectional encoding solved the most, namely 934 instances.
- Followed by 928 of directed, 719 of undirected, and 483 of acyclic.

The award-winning solvers of the FHCP challenge

Rank	Team	#Solved	Method
1	INRIA, France	985	CPLEX
2	IBM, United Kingdom	614	SAT
3	King Saud University, Saudi Arabia	488	unknown
4	TU Darmstadt, Germany	464	unknown
5	Independent Researcher	385	unknown

²http://fhcp.edu.au/fhcpcs

The award-winning solvers of the FHCP challenge

Rank	Team	#Solved	Method
1	INRIA, France	985	CPLEX
	The bidirectional encoding (proposal)	934	ASP
2	IBM, United Kingdom	614	SAT
3	King Saud University, Saudi Arabia	488	unknown
4	TU Darmstadt, Germany	464	unknown
5	Independent Researcher	385	unknown

Our declarative approach can be highly competitive in performance.

²http://fhcp.edu.au/fhcpcs

Comparison with other approaches

CPU times(s) on all HCP instances of the XCSP 2019 competition

Instances	ASP (proposal)	PicatSAT (xcsp_picat)	SAT encoding [Heule,'21]
graph48	0.752	68.718	62.920
graph162	7.500	45.849	44.440
graph171	10.383	15.809	10.390
graph197	0.342	78.241	12.970
graph223	125.580	201.394	22.600
graph237	0.306	121.177	16.580
graph249	0.956	75.776	1.380
graph252	266.701	95.879	9.950
graph254	2.717	73.901	2.660
graph255	83.760	87.443	6.110
Average ratio	1.00	83.33	18.54

• Our bidirectional encoding is 83 times faster in average than *PicatSAT* and 18 times faster than the SAT encoding.

Part 2: Main contributions for HCRP

- We <u>extend</u> our bidirectional encoding to solving HCRP, which is subsequently solved by an ASP-based CRP solver <u>recongo</u> [Yamada+,JELIA'23].
- 2 We develop three hint constraints to accelerate HCRP solving.
- **3** We <u>create a new benchmark set</u> of HCRP consisting of 948 HCRP instances, in which 431 are reachable and 517 are unreachable.
- The extended encoding for HCRP solving can manage to determine the reachability of 882 out of 948 instances.
- Furthermore, it is able to find shortest reconfiguration sequences of length 28 in about 200 seconds in average.

ASP fact format of HCRP instances

HCRP instances are represented as ASP facts in a standard way.

ASP fact format

```
node(1).
           node(2).
                       node(3).
                                   node(4).
                                               node(5).
                                                           node(6).
edge(1,2).
           edge(1,3).
                       edge(1,6).
                                   edge(2,4).
                                               edge(2,6).
edge(3,5).
           edge(3,6).
                       edge(4,5).
                                   edge(4,6).
                                               edge(5,6).
start(1,3). start(1,6).
                       start(2,4).
                                   start(2,6).
                                               start(3,5).
                                                           start(4,5).
goal(1,2).
           goal(1,6).
                       goal(2,4).
                                   goal(3,5).
                                               goal(3,6).
                                                           goal(4,5).
```

Full encoding for HCRP solving (proposal)

```
#program base.
:- not 1 { in(X,Y,0) ; in(Y,X,0) } 1, start(X,Y).
#program step(t).
\{ in(X,Y,t) ; in(Y,X,t) \} 1 :- edge(X,Y).
:- not 1 { in(X,_{,}t) } 1, node(X).
:- not 1 { in(_,X,t) } 1, node(X).
reached(s,t).
reached(Y,t) := reached(X,t), in(X,Y,t).
:- not reached(X,t), node(X).
:- not X < Y, in(s,X,t), in(Y,s,t).
removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.
:- not k \{ removed(\underline{,},\underline{,}t) \} k, t>0.
#program check(t).
:- not 1 { in(X,Y,t) ; in(Y,X,t) } 1, goal(X,Y), query(t).
```

• The encoding consists of three parts: base, step(t), and check(t).

- The constant t is a parameter representing each step in a transition sequence.
- The auxiliary atom in(X,Y,t) is intended to represent that the directed edge X→Y is in a Hamiltonian cycle at step t.

```
1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).
2 :- not 1 { in(X,_,t) } 1, node(X).
3 :- not 1 { in(_,X,t) } 1, node(X).
4
5 reached(s,t).
6 reached(Y,t) :- reached(X,t), in(X,Y,t).
7 :- not reached(X,t), node(X).
8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.
10 :- not k { removed(_,_,t) } k, t>0.
```

- Key idea: The rule in (1), for each edge(X,Y), introduces two atoms in(X,Y,t) and in(Y,X,t) and enforces that at most one of them is included in the Hamiltonian cycle.
- Although the at-most-one constraints are <u>implied constraints</u>, they gain some performance improvement for HCP solving.

```
1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).
2 :- not 1 { in(X,_,t) } 1, node(X).
3 :- not 1 { in(_,X,t) } 1, node(X).
4
5 reached(s,t).
6 reached(Y,t) :- reached(X,t), in(X,Y,t).
7 :- not reached(X,t), node(X).
8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.
10 :- not k { removed(_,_,t) } k, t>0.
```

- (2)–(3): The degree constraints
- (5)–(7): The connectivity constraints

```
1 { in(X,Y,t) ; in(Y,X,t) } 1 :- edge(X,Y).
2 :- not 1 { in(X,_t) } 1, node(X).
3 :- not 1 { in(_,X,t) } 1, node(X).
4
5 reached(s,t).
6 reached(Y,t) :- reached(X,t), in(X,Y,t).
7 :- not reached(X,t), node(X).
8
9 removed(X,Y,t) :- in(X,Y,t-1), not in(X,Y,t), not in(Y,X,t), t>0.
10 :- not k { removed(_,_,t) } k, t>0.
```

- (9)–(10): The k-opt transition constraints
- (9): The auxiliary atom removed(X,Y,t) represents that the directed edge X→Y is removed from a Hamiltonian cycle from step t-1 to t.
- (10): The rule enforces that exactly k edges in a Hamiltonian cycle are removed at each step t.

CPU time(s) of finding shortest transition sequences

Length	#Instance	CPU time(s)		
Length		average	maximum	minimum
28	4	200.725	290.375	130.622
14	10	148.754	209.782	119.712
8	10	141.659	293.491	74.568
7	10	2.304	2.652	1.994
6	44	26.723	67.564	8.663
4	110	14.200	83.747	0.889
3	64	6.048	25.496	1.100
2	124	1.343	2.207	0.274
1	47	0.669	2.036	0.434

• Our encoding was able to find the solutions of length 28 in about 200 seconds in average.

The most relevant related fields

Combinatorial reconfiguration is

- to study the solution spaces of combinatorial problems,
- to decide whether there are sequences of feasible solutions that have special properties, such as reachability, connectivity, and diameter:

$$X_s = X_0 \Rightarrow X_1 \Rightarrow X_2 \Rightarrow \cdots \Rightarrow X_\ell = X_g$$

where X_s and X_g are optional.

- In contrast, **BMC** [Biere,'09] is to study properties (e.g., safety and liveness) of state transition systems and to decide whether there is no sequence for which X_s is a start state and X_g is an error state expressed by rich temporal logic.
- Classical planning [Kautz and Selman,'92] is to develop action plans for more practical applications and to decide whether there are sequences for which X_s is a start state and X_g is a goal state.

The relationship between those fields has not been well investigated.

Conclusion

We presented an ASP-based approach to solving the Hamiltonian cycle reconfiguration problem.

All source code is available from:

https://github.com/banbaralab/hcr.

Future work

- Solving the diameter problems of Hamiltonian cycle reconfiguration.
- Applying our declarative approach to a wide range of combinatorial reconfiguration problems.