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Gene Regulatory Networks

Living organisms use genetic information to produce proteins,
which shape their structure and functions.
Some proteins regulate the expression of their own genes or
those of others.

The Nobel Committee for Physiology or
Medicine / Illustration: Annika Röhl
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A gene regulatory network shows how genes and proteins
interact.
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Boolean Network [Kauffman, 1969]

A Boolean Network (BN) is a representative mathematical model
for describing gene regulatory networks.
Each gene is represented by a propositional variable xi, and its
expression state is expressed as a binary value.
The regulatory function associated with each gene is represented
by a propositional formula ψi.

Example of a BN (given as a set of equations xt+1
i = ψt

i)

x1

x2 x3

xt+1
1 = xt

2

xt+1
2 = ¬xt

3

xt+1
3 = ¬xt

1 ∧ xt
2

000 010 011 001

100 110110 111 101

This BN has 23 possible states.
An attractor is a stable state of a gene regulatory network, in the
sense that once the system enters it, it cannot escape.
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Challenges in Attractor Analysis

BNs are collected and published in repositories aimed at the
formal verification of biological knowledge:

▶ GINsim [Naldi+, 2018]
▶ CellCollective [Helikar+, 2012]
▶ Biomodels [Malik-Sheriff+, 2020]

Many BN analysis tools have also been proposed:
▶ Boolsim [Garg+, 2008], Pyboolnet [Klarner+, 2017],

CABEAN [Su+, 2021], pystablemotifs [Rozum+, 2022],
AEON [Benes+, 2022], SAF [Soh+, 2023], fASP [Trinh+, 2023]

However, in recent years, some BNs published in these repositories
have contained more than 300 genes and over 1020 attractors.
For such large-scale networks, existing analysis tools have struggled
not only to enumerate attractors, but even to count them.

Counting is important for evaluating the roles of genes in a BN.
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Research Objective and Content

Develop a SAT-based BN Attractor Counting Solver for fast attractor
counting.

Attractor
Counting
Problem

Arbitrary
Propositional

Formula
CNF

Number of
Solutions

Number of
Attractors

Modeling Translation

#SAT Solver

Research Content
Constraint Modeling: An arbitrary propositional formula whose
solutions correspond to attractors
CNF translation: A method to convert propositional formulas into
CNF with as few variables and clauses as possible
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Arbitrary Propositional Formula Whose Solutions
Correspond to Attractors

Input of the Attractor Counting Problem (n = number of genes)

xt+1
i = ψt

i (i = 1, . . . , n)

Condition for xi to change from 0 to 1 between t and t + 1

¬xt
i ∧ ψt

i

Condition for xi to change from 1 to 0 between t and t + 1

xt
i ∧ ¬ψt

i

For state t = 0 to be a attractor, no transitions other than self-loops
may occur. This leads to the following condition:

Propositional Formula Whose Models Correspond to Attractors∧
1≤i≤n

¬(¬x0
i ∧ ψ0

i ) ∧ ¬(x0
i ∧ ¬ψ0

i )
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Translation to CNF

Ψ =
∧

1≤i≤n

¬(¬xi ∧ ψi) ∧ ¬(xi ∧ ¬ψi)

Although the proposed constraint model is a propositional formula,
in a BN each ψi is given in an arbitrary form, so it is not in CNF.
To use existing counting solvers efficiently, it is necessary to
convert the formula into CNF with as few variables and clauses as
possible.

Proposed CNF translation
We propose the following three types of translation:

1 Direct translation (using Tseitin transformation)
2 Indirect translation (using model enumeration)
3 Hybrid translation
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Direct translation

Before translation

Ψ =
∧

1≤i≤n

¬(¬xi ∧ ψi) ∧ ¬(xi ∧ ¬ψi)

The Tseitin transformation [Tseitin, 1968] is a method for
converting an arbitrary propositional formula into a
satisfiability-equivalent CNF by recursively introducing new
variables that are satisfiability-equivalent to subformulas.
Instead of applying it directly to Ψ, we apply it to each ψi to obtain
a satisfiability-equivalent literal li.

CNF After translation

ΨD =
∧

1≤i≤n

¬(¬xi ∧ li) ∧ ¬(xi ∧ ¬li) ∧ TseitinTrans(li ↔ ψi)
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Example of Direct translation

Before translation

xt+1
1 = (xt

2 ∨ xt
3 ∨ xt

4) ∧ (xt
2 ∨ ¬xt

5)

CNF After translation
ΨD = ¬(¬x1 ∧ l1) ∧ ¬(x1 ∧ ¬l1) ∧ TseitinTrans(l1 ↔ ψ1)

= ¬(¬x1 ∧ l1) ∧ ¬(x1 ∧ ¬l1) ∧
(p1 ↔ x2 ∨ x3 ∨ x4) ∧
(p2 ↔ x2 ∨ ¬x5) ∧
(l1 ↔ p1 ∧ p2)
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Indirect translation

Before translation

Ψ =
∧

1≤i≤n

¬(¬xi ∧ ψi) ∧ ¬(xi ∧ ¬ψi)

Convert ¬xi ∧ ψi and xi ∧ ¬ψi into DNF form.
Since the negation of a DNF is a CNF, the CNF can be obtained
as follows.

CNF After translation

ΨI =
∧

1≤i≤n

¬DNF(¬xi ∧ ψi) ∧ ¬DNF(xi ∧ ¬ψi)

Let DNF(ϕ) =
∨

m∈M(ϕ)

∧
l∈m

l, where M is the set of all complete

solutions.
Since the clauses in DNF(ϕ) are long and can be extremely
numerous, we aim to compute a logically equivalent but more
compact DNFP(ϕ). 9 / 20



Computation Method for DNFP(ϕ)

Algorithm 1 Enumeration of All Partial Models DNFP(ϕ)

Input: Propositional formula ϕ, upper bound on #models co
Output:Full enumeration possible; if so, partial models MP

1: Ω := Apply Tseitin transformation (one-way) to ϕ
2: ΩPI := Transform Ω according to [Jabbour+, 2014]
3: (isOK,M) := ModelEnumeration(ΩPI, co) ▷ Enumerates PIs of Ω
4: Return (isOK, {m ∈ M | m ∩ Var(ϕ)})

The prime implicants of Ω do not coincide with those of ϕ, but the
DNFP(ϕ) obtained by this algorithm is logically equivalent to
DNF(ϕ) and yields a set of partial solutions that is significantly
smaller than the set of complete solutions.

Note
DNFP(ϕ) generates far fewer and shorter models than DNF(ϕ).
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Example of Indirect translation

Before translation

xt+1
1 = (xt

2 ∨ xt
3 ∨ xt

4) ∧ (xt
2 ∨ ¬xt

5)

CNF After translation: Case of DNF(ϕ)
ΨI = ¬DNF(¬x1 ∧ ψ1) ∧ ¬DNF(x1 ∧ ¬ψ1)

= ¬(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5) ∧ ¬(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ ¬x5) ∧
¬(¬x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ x5) ∧ ¬(¬x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ ¬x5) ∧
¬(¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5) ∧ ¬(¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5) ∧
¬(¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5) ∧ ¬(¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∧
¬(¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5) ∧ ¬(¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5) ∧
¬(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5) ∧ ¬DNF(x1 ∧ ¬ψ1)
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In this example, the total number of solutions is reduced from 16 to 5.
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Hybrid translation

The Direct translation has the advantage of not requiring model
enumeration, while the Indirect translation has the advantage of
not requiring new variables. We propose a translation method that
combines the strengths of both.

Algorithm 2 Hybrid translation
Input: Propositional variable xi, update function ψi, threshold cutoff
Output: CNF

1: (isOK+,M+) := Enumeration of small partial solutions(¬xi ∧ ψi,
cutoff )

2: if ¬isOK+ then return (xi ∨ ¬li) ∧ (¬xi ∨ li) ∧ TT(li ↔ ψi) ▷ Direct
3: (isOK−,M−) := Enumeration of small partial solutions(xi ∧ ¬ψi,

cutoff )
4: if isOK− then return ¬(M+ ∪ M−) ▷ Indirect
5: return (xi ∨ ¬li) ∧ (¬xi ∨ li) ∧ TT(li ↔ ψi) ▷ Direct

In this study, we set cutoff = 1000 based on preliminary exp.
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Experiments

Benchmark Problems
Experiments were conducted using all 643 BNs from [Trinh+, 2023].

Real-world: BBM (230), Selected (13)
Synthetic: P-Random (400)

Comparison Methods
Proposed methods:

▶ Direct, Indirect, Hybrid + SharpSAT-TD [Korhonen+, 2023]
▶ Hybrid + BDD_MINISAT_ALL [Toda+, 2016]

Existing methods:
▶ PyBoolNet [Klarner+, 2017]
▶ SAF [Soh+, 2023]
▶ fASP-c, fASP-s [Trinh+, 2023]
▶ AEON [Benes+, 2022]
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Number of Problems Solved by Each Method

A) Number of problems solved in each benchmark set

Existing Tools Proposed Methods
# SAF fASP-c fASP-s AEON H.E. D.C. I.C. H.C.

BBM 230 220 195 213 224 218 230 229 230
P-Random 400 0 15 15 12 15 71 88 88
Selected 13 6 6 7 8 7 12 11 12
Total 643 226 216 235 244 240 313 328 330

B) Number of problems solved by range of attractor counts |A|
0 ≤ |A| < 1000 157 142 157 157 154 157 157 157 157
1000 ≤ |A| < 1010 72 70 59 70 72 71 72 72 72
1010 ≤ |A| < 1030 27 14 0 8 18 12 27 25 27
1030 ≤ |A| 387 0 0 0 0 0 57 74 74

C) Number of problems solved by range of gene count n

0 ≤ n < 100 198 196 182 194 198 197 198 198 198
100 ≤ n < 1000 44 30 19 26 34 28 44 42 44
1000 ≤ n < 2000 111 0 6 6 6 6 41 49 49
2000 ≤ n 290 0 9 9 6 9 30 39 39
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Cactus Plot: BBM (230)
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Only the proposed method was able to determine the number of
attractors for all BNs.
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Cactus Plot: P-Random (400)
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Cactus Plot (CPU Time)
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Comparison of CNFs in the Proposed Method

Benchmark Set Timeout #Variables #Clauses #Literals
D I H I H I H I H

BBM 0 1 0 0.47 0.48 0.49 0.49 0.58 0.58
P-Random 0 0 0 0.22 0.22 0.52 0.52 1.52 1.52
Selected 0 2 0 0.36 0.36 0.68 0.61 1.90 1.34
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Problems with Previously Unknown Numbers of
Attractors

Across 400 synthetic BNs, counted fixed-points for 88;
75 previously-unknown.
Across 243 real-world BNs, counted fixed-points for 242;
9 previously-unknown as shown below.

Instance Name #Genes #Attractors
#113 ER-STRESS 182 1168455003694263561093120
#122 NSP14 168 33278627362665583108034953216
#124 NSP9-PROTEIN 252 13611294676837538538534984297270728458240
#144 SNF1-AMPK-PATHWAY 202 10096027719780900754667077632
#220 H.-RESPONSE-IN-L. 342 2656331146614175432704000
#221 MYCOBACTERIAL-L. 317 2473901162496
Cell-Cycle-Control 3158 —
Alzheimer 762 1355318094474400392445140020586319209-

-7103960354330270737143428036029317120
Cholocystokinin 383 47935169240579835005239296
Leishmania (same as #220 above) 342 2656331146614175432704000
Yeast-Pheromone 246 5711631030629640192
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Summary

We proposed a method for counting attractors in BNs, a
mathematical model of gene regulatory networks.
Contributions of this study

▶ Proposed a constraint model and CNF translation for the attractor
counting problem.

▶ Successfully counted attractors that existing tools could not handle
(9 real-world, 75 synthetic).

Future Directions
Verify the biological significance of attractor analysis results
obtained from counting.
Comparative evaluation of CNF translation methods for
propositional formulas.
Apply SAT-based methods to other BN problems such as cyclic
attractors, bifurcation, and basins of attraction.
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Significance of Counting Attractors

Significance in Gene Regulatory Networks
The effect of operations such as single knockout (SKO) or single
overexpression on the network can be analyzed by counting
attractors (see next slide).
Serves as one indicator when modeling gene regulatory networks.

Significance in Computing Attractors
Serves as a reference for determining whether attractor
enumeration is feasible.
When enumerating a very large number of attractors in parallel,
counting can be used as an indicator for load balancing.
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#221 MYCOBACTERIAL-L. [Ganguli+ 2012]

This BN centers on a group of genes that change specifically during
the dormancy phase of Mycobacterium tuberculosis, incorporating the
transcription factors regulating them and their functional interactions.
Stable states are interpreted as dormancy states.

Single knockout (SKO) refers to the genetic operation of inactivating
or deleting a specific single gene in an organism’s genome. This
technique is used to study how a specific gene affects development,
metabolism, and disease.
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Data (%) The impact of SKO on stable states
can be analyzed via counting. In
the figure, the SKO of the rightmost
gene reduces the number of
attractors to 0 (no stable states),
rendering the network unstable.
One such gene is Rv3132c (DosS),
which agrees with the literature
description.
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Cactus Plot: BBM (230)
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Cactus Plot: P-Random (400)
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Cactus Plot (CPU Time)
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Comparison of CNFs in the Proposed Method

Benchmark Set Timeout #Variables #Clauses #Literals
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Scatter Plot (Number of Variables)
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Scatter Plot (Number of Clauses)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

In
d
ir
e
c
t

Direct

BBM

P-random

Selected

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

H
y
b
ri
d

Direct

BBM
P-random
Selected

8 / 19



Scatter Plot (Number of Literals)
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Limitations of Existing Methods

Existing Methods
Various studies have been conducted to find attractors:

Boolsim [Garg+, 2008]
Pyboolnet [Klarner+, 2017]
CABEAN [Su+, 2021]
pystablemotifs [Rozum+, 2022]
AEON [Benes+, 2022]
SAF [Soh+, 2023]
fASP [Trinh+, 2023]

However, there exist BNs for which these existing methods cannot find
attractors.
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Limitations of Enumeration-based Existing
Methods

All existing methods for finding attractors use enumeration.
Recently published BNs may contain extremely large numbers of
attractors (≥ 1020), making enumeration infeasible for these
methods.

Knowing the number of attractors is useful for evaluating the
importance of specific genes in a BN. Therefore, counting instead of
enumeration is a promising approach.

Can Existing Tools Be Used as Counting Solvers?
Some recent enumeration methods provide an option to return
only the number of attractors to reduce I/O costs.
However, many problems could not be solved even when outputs
were suppressed.
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Genome, Genes, and Proteins

A genome is the genetic information of an organism, consisting of
a sequence of bases A/T/G/C.
A gene is a subsequence of the genome.
All living organisms produce proteins based on the information in
their genes, forming their structure and functions to sustain life.

The Nobel Committee for Physiology or Medicine / Illustration: Annika Röhl

Proteins can regulate the expression of their own genes and those
of others.
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Number of Instances Solved by Each Method

A) Number of instances solved in each benchmark set
Existing Methods Proposed Methods

#Ins. PyB. SAF fASP-c fASP-s AEON H.E. D.C. I.C. H.C.
BBM 230 180 220 195 213 224 218 230 229 230
P-Random 400 0 0 15 15 12 15 71 88 88
Selected 13 5 6 6 7 8 7 12 11 12
Total 643 185 226 216 235 244 240 313 328 330

B) Number of instances solved by range of attractor counts |A|
0 ≤ |A| < 1000 157 138 142 157 157 154 157 157 157 157
1000 ≤ |A| < 1010 72 47 70 59 70 72 71 72 72 72
1010 ≤ |A| < 1030 27 0 14 0 8 18 12 27 25 27
1030 ≤ |A| 387 0 0 0 0 0 0 57 74 74

C) Number of instances solved by range of variable count n
0 ≤ n < 100 198 170 196 182 194 198 197 198 198 198
100 ≤ n < 1000 44 15 30 19 26 34 28 44 42 44
1000 ≤ n < 2000 111 0 0 6 6 6 6 41 49 49
2000 ≤ n 290 0 0 9 9 6 9 30 39 39
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